
APPHYS 237 / BIO 251, Problem Set 4

DUE: 9AM 6/2/23 (Note: this is a Friday)

Problem 1: Measuring the DFE for de novo beneficial mutations, Part II

This problem is a continuation of the barcoded lineage tracking problem from last week’s homework,
now with some applications to real data.

The file levy_blundell_etal_2015_barcode_trajectories.txt contains the raw read count tra-
jectories obtained from one such experiment.14 In this experiment, half a million barcoded lineages
were serially transferred in glucose limited media for 14 days, with bottleneck size of a 256-fold
dilution rate (�t = 8 generations/day) and a bottleneck size of Nb ⇡ 7 ⇥ 107. We’ll denote the
read count trajectory for an arbitrary barcode i by Ri,t, and we’ll let Dt =

P
iRi denote the total

sequencing coverage in each timepoint. This defines a corresponding set of read count frequencies

f̂i,⌧ ⌘
Ri,⌧

D⌧
. (19)

Noise in these read count trajectories reflects both the stochastic growth dynamics of the experi-
ment, as well as noise in the data generation process (PCR amplification and sequencing). Levy,
Blundell, et al argued that this compound process is well approximated by an e↵ective branching
process model that connects the read count frequencies at successive sequenced timepoints. In
particular, given that we observe a lineage at frequency f̂i,⌧ , the conditional probability at the next

timepoint, p(f̂i,⌧+1|f̂i,⌧ ), can be approximated by a branching-process-like generating function:
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where �t⌧ is the number of generations between the timepoints, Xi,⌧ is the fitness of lineage i

at timepoint ⌧ , X⌧ is the mean fitness of the population at that timepoint (X⌧ ⇡
P

iXi,⌧ f̂i,⌧ ),
and ⌧ is an e↵ective parameter capturing the net e↵ects of genetic drift and measurement noise.
As we saw in class, this function is di�cult to invert exactly to get the probability distribution
p(f̂i,⌧+1|f̂i,⌧ ). But for large Ri,⌧+1, it can be approximated by the asymptotic expansion,
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Both representations of the probability distribution will be useful at di↵erent stages of the problem
below.

(a) We’ll first use the measured data to verify that Eq. 20 is a good approximation. Consider
the first timepoint (⌧ = 0), where few of the lineages will have any beneficial mutations.
This means that we can assume that Xi,⌧ ⇡ X⌧ ⇡ 0. Then consider the set of all lineages
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with exactly 50 reads in the first timepoint. By construction, these should all have the same
conditional distribution, p(f̂i,1|f̂i,0). Use the observed frequencies of these lineages at the next

timepoint (f̂i,1) to show that the conditional distribution is consistent with the approximation
in Eqs. 20 and 21.

Hint: consider the empirical generating function, Ĥ(z) = 1
n

P
i exp

⇣
�zf̂i,1

⌘
, evaluated for

z near “typical” values of 1/f̂i,1. (Can you explain why this should be a robust moment to
estimate for a positive random variable in a finite sample?) Rearrange Eq. 20 as a linear
function of 1/z, so that you can use linear regression15 to estimate the slope and intercept.

(b) If we continue to focus on rare mutations (e.g,, 20  Ri,⌧  60), then the vast majority should
remain neutral even for ⌧ > 0. We can therefore use the statistics of these neutral lineages
to estimate ⌧ and X⌧ using the same approach you outlined in (b). Specifically, estimate a
separate value of ⌧ and X⌧ for lineages with Ri,⌧ = 20, . . . , 60, and average them together
to obtain a single estimate of ⌧ and X⌧ for each timepoint. Plot your estimated values as
a function of time. What is the estimated fold change in frequency of a neutral lineage over
the course of the experiment?

(c) We can now use the fitted values of ⌧ and X⌧ (measured for the bulk population) to scan for
outlier lineages that acquired a beneficial mutation. To do so, let’s imagine that a beneficial
mutation with e↵ect s occured in lineage i some timepoint t < t⌧ . The lineage frequency at
later timepoints can then be split into neutral and beneficial components,

f̂i,⌧ = f̂
0
i,⌧ + f̂

s
i,⌧ , (22)

where f̂
0
i,⌧ and f̂

s
i,⌧ are both described by Eq. 20 with Xi,⌧ = 0 and Xi,⌧ = s, respectively.

Derive an exprssion for the generating function of f̂i,⌧+1, conditioned on the values of f̂i,⌧ ,

f̂
0
i,⌧ , and f̂

s
i,⌧ . What is the e↵ective lineage fitness Xi,⌧?

Unfortunately, we don’t observe the sublineages f̂0
i,⌧ and f̂

s
i,⌧ directly, so we’ll have to estimate them

from the observed values of f̂i,⌧ . If the beneficial mutation establishes at time t0, its frequency at
later timepoints will be given by

f(t|s, t0) ⇡
c
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, (23)

where c is an O(1) constant that depends on the variance in o↵spring number in the experiment
(c ⇡ 1.8 here, see SI p. 11 in Levy, Blundell, et al 2012). We can therefore approximate

f̂
s
i,⌧ ⇡

8
><

>:

0 if t⌧ < t0

f(t⌧ |s, t0) if f(t⌧ |s, t0) < f̂i,⌧ ,

f̂i,⌧ else.

(24)

This completely specifies the model. The probability of observing a given lineage trajectory, con-
ditioned on s and ⌧ , is given by

p({f̂i,⌧}|s, t0) ⇡ p(f̂i,0)
Y

⌧

p(f̂i,⌧+1|f̂i,⌧ , s, t0) . (25)
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E.g., using the linregress function in the SciPy stats package.
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(d) Parameter estimation can be done with a standard Bayesian approach. Write a formal expres-
sion for the posterior probability, p(s, t0|{fi,⌧+1}), relative to the posterior probability without

a beneficial mutation (t0 = 1). You may leave your answer as a function of p(f̂i,⌧+1|f̂i,⌧ , s, t0)
and the prior probabilities p0(s, t0). This ratio is known as the posterior odds ratio.

Numerically calculate the posterior odds ratio for trajectory 14 in the data file. For simplicity,
we’ll discretize (s, t0) values into a grid with spacing �t0 = 1 and �s = 0.005, and we’ll assume
a flat prior

p0(s, t0)

p0(t0 = 1)
⇡

(
cf0NbU

0
b s · �s · �t0 for 0  s  0.4 and �250  t0 < 100

0 else,
(26)

where f0 is the typical frequency of a lineage in the initial pool, and U
0
b ⇠ 10�5. For which

values of s and t0 is the posterior odds ratio the highest? Does this make sense given the
shape of the trajectory?

(e) Now use your approach in (d) to estimate (s, t0) values for the first 1000 trajectories in the
experiment. Set t0 = 1 if the posterior odds ratio is less than one; otherwise take the values
of (s, t0) that maximize the posterior odds ratio. How many beneficial mutations do you
detect? Extrapolating the run time from this pilot data, estimate how long it would take
your program to process all ⇠500, 000 trajectories in the experiment?

Bonus: estimate (s, t0) values for all ⇠500, 000 trajectories in the experiment.

(f) Finally, we can use your detected beneficial mutations to estimate the distribution of fitness
e↵ects, Ub⇢(s). The number of beneficial mutations in an interval s ± �s that establish and
rise to detectable frequencies is given by

n(s) ⇡

"
Nb

Z t⇤(s)

0
e
�X(t)

dt

#
· Ub⇢(s)�s ·

s

c
(27)

where t
⇤ is the latest the mutation could establish and still perturb the frequency of the

lineage. Write an approximate expression for t
⇤(s), and then rearrange Eq. 27 to write

Ub⇢(s)�s as a function of the observed values n(s). Plot your estimated DFE using the
beneficial mutations you detected in (f).

Problem 2: Genealogies from sequences of neutral mutations

In class, we saw how we can use coalescent theory to go from genealogies to sequences of neutral
mutations. In this problem, we will consider how to go in the opposite direction. Suppose we draw
a sample of n = 6 individuals from a population and observe mutations at one or more sites. We’ll
consider a few di↵erent imaginary scenarios with S = 1, 2, and 3 variable sites.

(a) A (b) AG (c) AG (d) AG (e) AGTG

A TC AG AG AGCG

A AG AC AC ACCG

T TC TC TC TCCA

T AG TC TC TCCG

T TC TC TG TCCA
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(a) Draw two genealogies that are consistent with the mutation pattern in (a), assuming that
each mutation happens only once (µTc ⌧ 1).

(b) Repeat for pattern (b) above.

(c) Repeat for pattern (c) above.

(d) Try to repeat for pattern (d). Is it possible to draw a consistent genealogy where each mutation
happens only once? How is (d) di↵erent from (c) and (b), in terms of the number of distinct
haplotypes that are observed? (A version of this idea, known as the four gamete test is
frequently used to diagnose recombination or recurrent mutation events in DNA sequence
data.)

(e) Draw a genealogy that is consistent with the mutation pattern in (e).

Problem 3: Sexual vs asexual selection on a highly polygenic trait

Suppose that we create a population by crossing two diverged strains of yeast, and we evolve the
resulting hybrid o↵spring in an environment that selects for higher values of a particular trait.
We’ll assume that the fitness components of this phenotype are controlled by a large number L of
mutational di↵erences between the two strains, each contributing a small fitness e↵ect ±s/2. For
simplicity, we’ll assume that the positive and negative mutations are evenly distributed between
the two parents, and that the recombination rate is su�cinetly high that the di↵erent mutations
are assigned to o↵spring independently. Under these assumptions, the variance in fitness of the
o↵spring are normally distributed with mean 0 and variance V = Ls

2
/4. The goal of this problem

is to consider what happens in the so-called infinitesimal limit , where we let L ! 1 and
s ! 0 while keeping the variance V = Ls

2
/4 constant. (Formally, we can achieve this by setting

s =
p

V/L and thinking about an asymptotic expansion for large L.)

(a) Let’s first consider the case where we evolve the hybrid o↵spring asexually. For simplicity,
we’ll neglect the possibility of additional mutations in the o↵spring, so that we essentially
have a pooled fitness assay similar to Problem 6 of Problem Set 1. What is the initial rate of
fitness increase of the population (@tX)?

(b) Suppose that the population was founded by a large but finite number of hybrid o↵spring,
so that there is a maximum possible fitness within this initial pool. Some of these lineages
will drift to extinction while rare, while others will establish and start to grow to higher
frequencies. Calculate the maximum fitness you expect to observe among these established
lineages, assuming that the population was founded from N0 hybrid o↵spring. This gives an
estimate of the maximum fitness that can be achieved in an asexual experiment before we
have to wait for additional mutations.

(Hint: see if you can use the same reasoning from Part E in Problem 2 of Problem Set 1.

(c) Now let’s imagine that the evolution step is performed with continual rounds of sexual re-
production, with a su�ciently high rate of recombination that the fitness-influencing sites
are e↵ectively unlinked (rij � �). How does the mean fitness of the population grow in this
scenario? How long do we have to wait before the population reaches the maximum asexual
fitness from part (b)? How much do the frequencies of mutations change over this timescale?
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