
APPHYS 237 / BIO 251, Problem Set 2

DUE: 5/2/23

Data files available at: https://bgoodlab.github.io/courses/apphys237/data_files.zip

Problem 1: Measuring the per-base-pair mutation rate with the Luria-Delbrück
fluctuation test

In Problem 2 of Problem Set 1, you worked out the theory behind the Luria-Delbrück experiment,
which is often used to estimate mutation rates in the laboratory (the fluctuation test). The file
lang_murray_08_fluctuation_test.txt contains the results of one such experiment performed
by Lang and Murray.2 Approximately n = 720 populations of S. cerevisiae (baker’s yeast) were
grown from an initial population size of N0 = 2000 for a total of T = 13 generations, and then
plated on Petri dishes containing the drug 5-fluoroorotic acid (“5-FOA”). Resistance to this drug is
primarily caused by loss-of-function mutations in the URA3 gene.3 Thus, the number of resistant
colonies in this experiment reflects the aggregate mutation rate for loss-of-function variants in this
gene (U�URA3). Lang and Murray used this fact, along with some targeted DNA sequencing, to
back out an estimate of the per-base-pair mutation rate. We will work through the key steps in
their analysis below.

(a) The colony counts in this experiment should follow a Luria-Delbrück distribution, which has
some peculiar sampling properties due to the presence of rare “jackpot” mutations. Can you
pick out a few of these jackpots by eye in the data file?

(b) Revisiting the theory in Problem 2 of Problem Set 1, calculate the probability p0 that we
observe zero resistant colonies in a particular population. We can estimate this number using
the observed fraction of plates with zero colonies:

p0 =
# experiments with MT,i = 0

n
(11)

which satisfies hp0i = p0. This was also true for the sample meanMT in Problem 2 of Problem
Set 1, which satisfied hMT i = hMT i. Can you explain why we expect p0 to be more robust
to the presence of rare jackpot events, compared to MT ?

(c) Rearrange your expression in (b) to solve for U�URA3 as a function of p0, and obtain an
estimator Û�URA3 by replacing p0 with the measured value p0. What is the expected mean
and variance of Û�URA3 in limit of many replicates (n � 1)? Estimate U�URA3 and its
uncertainty using the data provided above. Based on the inferred parameters, do you think
that this is a reasonable fitting procedure?

(d) To connect the phenotypic mutation rate Û�URA3 to a per-base-pair mutation rate, Lang and
Murray sequenced the URA3 gene in 237 of the resistant colonies from di↵erent plates in
their experiment. 30 of these colonies did not have any mutations in URA3, and presumably

2
Lang, G.I. and A.W. Murray (2008), “Estimating the per-base-pair mutation rate in the yeast Saccharomyces

cerevisiae,” Genetics 178:67–82.
3
5-FOA is nontoxic on its own, but it is converted into a toxic byproduct (5-fluoro-uracil) by the uracil biosynthesis

pathway. The URA3 gene catalyzes a key step in this process, so loss-of-function variants in URA3 confer resistance

when grown in media containing an external source of uracil.

1



reflect resistance mutations that arose in other genes. The remaining colonies had just a
single mutation in URA3 (or adjacent mutations that likely arose as a complex mutational
event). The distribution of mutations is broken down in the following table:

Mutation type Number of colonies
Nonsense SNVs 64
Other SNVs 103

Indels and etc. 40
WT URA3 30

The length of the URA3 gene is 804bp, so there are a total of 2412 possible single nucleotide
variants that could be produced. Based on the wildtype sequence of URA3, Lang and Murray
calculated that 123 of these potential variants are nonsense mutations (i.e. a preumature
stop codon, which we assume leads to a nonfunctional URA3 protein). Use these numbers to
convert the phenotypic mutation rate U�URA to a per-base-pair estimate (assuming that all
single nucleotide mutations are equally likely).

(e) The same data allow us to estimate another interesting but di�cult-to-observe quantity:
the probability that a random single nucleotide mutation disrupts the function of a protein.
Estimate this quantity using the URA3 data above.

Problem 2: Universality and non-universality among serial dilution models

(a) Let’s consider a more elaborate version of the serial dilution model we discussed in class,
in which the transfer processes introduces some growth rate variability across individuals.
Specifically, let’s assume that the fitness of each individual at the beginning of the daily cycle
is drawn from a Gaussian distribution with a genotype-dependent mean and variance. We’ll
let r and �

2 denote the mean and variance for wildtype individuals, while r + s and �
2 + ⌫

will denote the mean and variance for mutant individuals. We’ll assume that these fitness
perturbations are inherited by all of an individual’s descendants over the entire course of the
daily cycle.4 Calculate the mean and variance of the total mutation frequency after one cycle
to leading order in 1/N , s, and ⌫. Does this model lie in the same universality class as the
basic serial dilution model we discussed in class? If so, what are the e↵ective parameters se
and Ne?

(b) Now let’s consider a slightly di↵erent scenario, in which fitness perturbations are created by
environmental fluctuations that are shared across all individuals in the flask. Specifically, let’s
assume that the fitness di↵erence between mutant and wildtype in a given cycle is normally
distributed with mean s and variance ⌫. Calculate the mean and variance of the mutation
frequency after one cycle to leading order in 1/N , s, and ⌫. Does this model lie in the same
universality class as the serial dilution model we discussed in class? Why or why not?

4
In practice, one might imagine that these fitness perturbations will be lost over a few divisions. Our calculation

therefore represents an upper bound on the magnitude of these e↵ects.
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Problem 3: Neutral mutation accumulation in individuals vs populations

Suppose we found a population from a clonal ancestor and allow it to evolve for t generations.

(a) Suppose that you know the population frequencies of the mutations at each site ` in the
genome (` = 1, . . . , L), which we’ll denote by f`(t). Write a formula for the average number
of mutations in a randomly sampled individual from the population as a function of f`(t).
Call this number M1(t).

(b) Write an analogous formula for the average number of mutations that are shared by a ran-
domly sampled pair of individuals in the population. Call this number M2(t). What about a
random sample of n individuals?

(c) Write a stochastic di↵erential equation for f`(t) for an arbitrary site `, assuming that it evolves
neutrally. For this problem, you may neglect any correlations between f`(t) at di↵erent sites.
Use your stochastic di↵erential equation to derive a deterministic di↵erential equation for the
average frequency, hf`(t)i. Solve this equation and show how M1(t) grows with time.

(d) Now use the stochastic model to derive a deterministic equation for the second moment
hf`(t)2i. Solve this equation and show how M2(t) grows with time. How long do we have to
wait for the two expressions to give similar results? How can we explain the discrepancy at
short times?

Problem 4: Measuring the fitness e↵ects of all single gene knockouts

In Problem 6 of Problem Set 1, we worked out the mathematics of the pooled fitness assay. These
experiments are often performed in the context of large deletion screens. Several gene-editing
methods now exist for creating large pools of mutant strains (or libraries), in which each strain
has a particular gene disrupted and replaced with a known sequence containing a random DNA
barcode. In this case, the mutant strains are typically referred to as gene deletions or knockouts. By
PCR amplifiying and sequencing the barcode region,5 one can easily and cost-e↵ectively track the
frequencies of thousands of gene deletion mutants together in a single experiment – and therefore
estimate their fitness e↵ects. The goal of this problem is to give you a feel for what these numbers
look like.

The text file qian_etal_2012_deletion_fitnesses.txt contains results from one such knock-
out experiment peformed in yeast.6 In this experiment, a library of ⇠4600 strains (each with a
single gene deletion) was propagated in rich media for 26 generations and sequenced at the initial
and final timepoints. The entire process was then repeated again in a second biological replicate.
The estimated fitnesses of each deletion strain (relative to the ancestor) for each of the two replicates
are listed in the text file. Each of these measurements will involve some amount of measurement
error, so we can write the observed values as

ŝi,1 = si + ✏i,1 ,

ŝi,2 = si + ✏i,2 ,
(12)

5
We will o�cially introduce these techniques in more detail during the sequencing lectures. For now, you can just

think of this as a way to count frequencies of many di↵erent types at relatively high resolution.
6
Qian et al (2012), “The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast,” Cell

Reports 2: 1399–1410.
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where si is the “true” fitness of gene deletion i and ✏i,r is a random error term with mean h✏i = 0
and distribution p(✏). Without loss of generality, we can rewrite this pair of numbers as an average

si ⌘
ŝi,1 + ŝi,2

2
, (13)

and a di↵erence

�i ⌘ ŝi,2 � ŝi,1 . (14)

which satisfy hsii = si and h�ii = 0. As above, the measurement errors in ŝi,1 and ŝi,2 will cause
the sample average si to fluctuate around its true value si. Estimating the fitness e↵ects of di↵erent
gene deletions will therefore require us to distinguish these values from measurement noise. We
will work through a crude approach for doing this below.

(a) Suppose that the error distribution is symmetric around zero [p(✏) = p(�✏)]. Derive a rela-
tionship between the distribution of �i and the residual error around the average, defined
by ✏i ⌘ si � si. Use this result to estimate the empirical distribution of ✏i from the data,
assuming that this distribution is the same across all genes.

(b) Using your result in (a), plot the number of genes you would expect to see with |si| � s if all
the gene deletions were actually neutral (si = 0). Compare this prediction to the observed
number of genes with |si| � s. What fraction of gene deletions have significant fitness e↵ects?
and what are their typical fitness e↵ects?

(c) Repeat part (b), this time focusing only on beneficial mutations (si � s). What fraction of
gene deletions are beneficial in this environment? What are their typical fitness e↵ects?

(d) In Problem 1 of Problem Set 2, we estimated the fraction of spontaneous mutations that
disrupt the function of a gene. If we assume that all beneficial mutations that occur in
laboratory evolution experiments are e↵ectively loss-of-function mutations, use your answer
from Problem 1 of Problem Set 2, along with your results in (c), to estimate the distribution of
fitness e↵ects (DFE) of spontaneous beneficial mutations for yeast grown in this environment:

U⇢(s)ds ⌘ per generation rate of producing a mutation with fitness e↵ect s± ds (15)

We will consider a more direct way of measuring the DFE in Problem Set 3.

(e) The limited resolution in this experiment could come from one of two sources: (i) evolutionary
noise due to genetic drift or (ii) frequency estimation noise (e.g. due to finite sequencing
coverage). Assuming perfect frequency estimation, estimate the e↵ective population size
Ne required to produce a frequency change as large as the one produced by the minimum
resolvable fitness e↵ect, serr ⇠ h|✏i|i. You may assume that all deletion strains start at the
same frequency. Similarly, in the absence of genetic drift (Ne = 1) estimate the frequency
resolution �f required to show that the fitness e↵ect of a truly neutral deletion is  serr.
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