
AP237/Bio251 Problem Set 3 Solutions

Written/compiled by: Benjamin Good and Anita Kulkarni

March 7, 2021

Problem 1: Heuristics for recessive mutations

Part A

The short-time approximation of our SDE is

f(∆t) = f(0) + sf2(0)∆t+

√
f(0)∆t

2N
Z

This approximation is valid up to logarithmic (order-of-magnitude) precision on a timescale ∼ ∆treset;
to find the frequency boundary between drift-dominated and selection-dominated regimes, check whether
deterministic or stochastic forces are dominant on this timescale (look for self-consistency), similar to what
was done in class for the haploid case.

• If deterministic forces are dominant,

f(0) ∼ |f(∆treset)− f(0)| ∼ |s|f2(0)∆treset =⇒ ∆treset ∼
1

f |s|

On this timescale, the contribution from drift is√
f

2N

1

f |s|
=

√
1

2N |s|

Dropping constant factors, we get that |∆fdrift| � |∆fsel| ∼ f when

f � 1√
N |s|

• Similarly, perform a self-consistency check under the assumption that stochastic forces are dominant.
Under this assumption,

f ∼ |∆fdrift| ∼
√
f∆treset

2N
=⇒ ∆treset ∼ 2Nf

On this timescale, the contribution from selection is 2Nsf3, and for this to be � f , we need f �
1√

2N |s|
. Thus, |∆fsel| � |∆fdrift| ∼ f when

f � 1√
N |s|

and we have self-consistency.

Drift dominates below f ∼ 1/
√
N |s|, and selection dominates above f ∼ 1/

√
N |s|. In order for selection to

be effective in at least some part of frequency space, we need the frequency boundary to be� 1; rearranging,
we find that N |s| � 1.

1

Part B

The following heuristic result derived in class is not haploid-specific (i.e. the derivation did not utilize any
particular properties of the haploid SDE): a mutant with initial size f0 drifts to final (boundary) size f with
probability f0/f on a timescale of ∼ Nf generations. Plugging in our results from part a, assuming s� 1,
we get that a mutant with initial size ∼ 1

N drifts to boundary size ∼ 1√
Ns

with probability ∼
√

s
N on a

timescale of ∼
√

N
s generations.

Since the mutation is strongly beneficial, once its frequency reaches f∗ ∼ 1/
√
Ns, it is guaranteed to fix

deterministically. How long will this part take? To get a rough estimate, solve the deterministic equation
(in the low-frequency limit since this is more tractable) with f(0) = f∗:

∂f

∂t
= sf2 =⇒ f(t) =

f∗

1− f∗st

From this, we see that f(t) = 1
2 when

t1/2 =
1

s
(

1

f∗
− 2) =

1

s
(
√
Ns− 2) ∼

√
N

s

Both the time to the drift boundary and subsequent deterministic time to frequency 0.5 are of order
√
N/s,

so in general the time to fixation is of order
√
N/s (with probability ∼

√
s/N , as we saw before). When

Ns� 1, the fixation probability is smaller than that of the haploid case, and the fixation time is larger.

Part C

The results from part b for below the drift barrier still apply for strongly deleterious mutations (a strongly
deleterious mutant will not grow much past the drift barrier): a strongly deleterious mutant with initial size

∼ 1
N drifts to final size ∼ 1√

N |s|
with probability ∼

√
|s|
N on a timescale of ∼

√
N
|s| generations. Plugging in

numbers, we get that a recessive mutation with fitness effect s ≈ −1 in a population of N = 106 individuals
will typically grow to maximum frequency ∼ 10−3 and exist for ∼ 103 generations.

Problem 2: The molecular diversity of adaptive convergence

Part A

We calculate dN/dS by computing (# of observed nonsynonymous mutations/# of possible nonsynonymous
mutations, from problem set 1)/(# of observed synonymous mutations/# of possible synonymous muta-
tions, from problem set 1). The numbers of possible mutations from the posted problem set 1 solutions
as of February 24, 2021 (3,059,233 possible synonymous mutations, 404,289 possible nonsense mutations,
and 8,587,451 possible missense mutations) yield a dN/dS for missense mutations of 4.81 and dN/dS for
nonsense mutations of 4.04. Other reasonable choices of numbers may yield ratios near roughly 4-5 and 3-4,
respectively. Either way, these are quite far from 1 and we can confidently say that mutations in both classes
are positively selected.

2

Part B

Figure 1: Number of sites mutated m or more times across all n = 114 replicates, plotted as a function of
m.

If all 789 mutations were distributed evenly across the sites in the E. coli genome, then we would expect
the number of mutations on each site to be roughly Poisson distributed. Given that the E. coli genome is
L = 4, 629, 812 bp long, this distribution would have a mean of λ = 789/4, 629, 812 ≈ 1.7 × 10−4. Thus,
under our assumptions, the number of sites expected to have ≥ m mutations would be

L×

(
1−

m−1∑
k=0

λke−λ

k!

)

Plugging in numbers, ≈ 788.9 sites would be expected to have ≥ 1 mutation, and ≈ 0.067 sites would
be expected to have ≥ 2 mutations. Since 53 � 0.067 sites had ≥ 2 mutations, we can safely say that
sites with two or more mutations are likely to have experienced beneficial selection. Using this criterion,
192/789 ≈ 24.3% of observed mutation events are likely to have come from a beneficially selected site.

Part C

Figure 2: Number of genes mutated m or more times across all n = 114 replicates, plotted as a function of
m.

Repeat a similar analysis as in part b. When counting synonymous, missense, nonsense, and within-gene
indel mutations, 833 different genes were found to have mutated. Given that there are L = 4, 217 genes in

3

the E. coli genome (and making the simplifying assumption that each gene is equally likely to mutate, i.e.
is equally long), our Poisson distribution has λ = 833/4217 ≈ 0.198. This yields ≈ 755.9 genes expected to
have ≥ 1 mutation, ≈ 72.2 genes expected to have ≥ 2 mutations, and ≈ 4.67 genes expected to have ≥ 3
mutations. The observed values are 291, 69, and 46, respectively, and since 46� 4.67, we can safely say that
genes with three or more mutations are likely to have experienced beneficial selection. Under this criterion,
565/833 ≈ 67.8% of observed mutation events are likely to have come from a beneficially selected gene.

Part D

Figure 3: Empirical saturation curve, or average (over 100 trials) number of genes mutated (point or indel
mutations within genes) in 3 or more randomly sampled populations of sample size n = 3, . . . , 114.

The curve slows down but does not appear to fully saturate by n = 114.

Part E

The probability (exact, based on the binomial distribution) of observing m mutations in gene i (with prob-
ability pi of being mutated in a given population) across ≥ 3 populations in an experiment with n total
populations is:

1− (1− pi)n − npi(1− pi)n−1 −
n(n− 1)

2
p2i (1− pi)n−2

Another decent approximation based on the Poisson distribution is

1− e−npi
(

1 + npi +
n2p2i

2

)
Three theoretical saturation curves (the above probability plotted for different values of n) for pi = 3

114 ,
5

114 ,
10
114

are given below.

4

Figure 4: Theoretical saturation curves as described in the text. The blue curve corresponds to pi = 3
114 ,

the orange curve corresponds to pi = 5
114 , and the green curve corresponds to pi = 10

114 .

For pi = 3
114 , approximately 57.7% of beneficial genes will be detected in an experiment with n = 114

replicates, for pi = 5
114 , approximately 87.5% will be detected, and for pi = 10

114 , approximately 99.7% will be
detected (these were calculated using the Poisson approximation). Our empirical saturation curve roughly
resembles the curve for pi = 5

114 (except at small sample sizes, of course different genes could have different
pi’s). 45 beneficial genes were detected for n = 114, and if these correspond to 87.5% of total beneficial
genes, then ≈ 50 genes are likely to be beneficial in this environment.

Part F

We find that 43 total replicates have a (non-structural) mutation in rho, 29 total replicates have a mutation
in iclR, and 20 replicates have mutations in both rho and iclR. By chance alone, we would expect

114× 43

114
× 29

114
≈ 11

replicates to have mutations in both genes, which is only half as big as the observed value. Statistical
significance can be assessed using Fisher’s exact test — i.e., the probability that we observe 20 or more lines
with both mutations by chance is given by

P =

29∑
k=20

(
43
k

)(
114−43
29−k

)(
114
29

) 10−4 (1)

This suggests that iclR mutations do tend to be more beneficial on a background of rho than without.
However, 9 replicates still have a mutation in iclR alone, which is still significantly beneficial under our
original 3-replicate threshold, suggesting that iclR are not exclusively beneficial in the presence of ρ.

Problem 3: Measuring the DFE for de novo beneficial mutations,
Part I

We’ll make use of the fact that this serial dilution experiment is equivalent to a diffusion model with an
effective population size Ne ∼ N0∆. We’ll then consider each of the four criteria in reverse order:

1. Each barcoded lineage will start at a characteristic frequency f0∼1/B. Genetic drift will require a
time of order ∼Nef0 = Ne/B generations to substantially perturb the frequency of these lineages, so
we need to make sure that the total experimental duration is less than this time:

T .
Ne
B

(2)

5

2. Conversely, beneficial mutations will require ∼1/sb generations to substantially change the lineage
frequency, so we want to make sure that the total duration is longer than this time. Combining with
the condition above, this yields

1

sb
. T .

Ne
B

(3)

3. Each barcoded lineage will produce ∼(Ne/B)UbsbT successful beneficial mutations over the course
of the experiment. We’ll want this number to be � 1 so there is a small probablity of producing
two beneficial mutations in the same lineage. Let’s pick 0.01 for concretness (i.e., 99% of putatively
adaptive barcodes will contain a single beneficial mutation). This leads to a condition,

Ne
B
UbsbT . 0.01 (4)

4. Finally, we want to make sure we have & 1000 lineages with at least one mutation. If each of the B
lineages produces a beneficial mutation with probability ∼(Ne/B)UbsbT , this requires that

NeUbsbT & 1000 (5)

Now to plug in some numbers. If sb ∼ 10−2, then the second condition requires that

T & 100 (6)

It’s always easier if we run a shorter experiment, so let’s see how far we can get with T∼100. If Ub∼10−5,
then the last condition requires that

Ne & 108 (7)

Meanwhile, the 3rd and 4th conditions together require that

B & 105 (8)

By choosing Ne = 108 and B = 105, we see that the first condition is satisfied. All four conditions are then
satsified. To implement this in a serial dilution experiment, we’d want to make sure that s∆t� 1. This can
be achived by taking ∆t = 10 and a bottleneck size of N0 = 107, and running the experiment for T/∆t = 10
days.

Finally, the sequencing depth must be chosen to be sufficiently high that we can resolve the relevant selection
pressures. For a barcode at frequency ∼1/B, the relative error in our frequency estimate will be of order
∼
√
B/D. If we want this to be no more than 10% at each timepoint, we will require

D & 100B (9)

or about ∼107 reads per timepoint. All 10 timepoints for a single replicate could therefore fit on a single
lane of Illumina sequencing (∼ 108 total reads).

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sample code for Problem Set 3

1 # Code for Problem 2 of Problem Set 3

2

3 # -*- coding: utf-8 -*-

4 """

5 Created on Mon Feb 17 00:47:03 2020

6

7 @author: Anita Kulkarni

8 """

9

10 import numpy as np

11 import random

12 import matplotlib.pyplot as plt

13

14 f = open("./data_files/problem_set_data/tenaillon_etal_2012_mutations.txt","r")

15 raw_data = f.readlines()

16 del(raw_data[0])

17

18 data = []

19 for i in range(len(raw_data)):

20 l = raw_data[i].split(", ")

21 # get rid of last two columns (allele, functional module)

22 del(l[len(l)-1])

23 del(l[len(l)-1])

24 l[0] = int(l[0][4:len(l[0])]) # lineage number

25 l[1] = int(l[1]) # mutation location

26 l = tuple(l)

27 data.append(l)

28

29 # Part A

30 n_synonymous = 0

31 n_missense = 0

32 n_nonsense = 0

33 for i in range(len(data)):

34 if data[i][3] == ’synonymous’:

35 n_synonymous = n_synonymous + 1

36 elif data[i][3] == ’missense’:

37 n_missense = n_missense + 1

38 elif data[i][3] == ’nonsense’:

39 n_nonsense = n_nonsense + 1

40 possible_synonymous = 3059233

41 possible_missense = 8587451

42 possible_nonsense = 404289

43 S = n_synonymous/possible_synonymous

44 N1 = n_missense/possible_missense

45 N2 = n_nonsense/possible_nonsense

46 print(N1/S)

47 print(N2/S)

48

49 # Part B

50 point_mutation_sites = []

51 for i in range(len(data)):

52 if data[i][3] == ’synonymous’ or data[i][3] == ’missense’ or data[i][3] == ’nonsense’ or data[i][3] == ’noncoding’:

22

53 point_mutation_sites.append(data[i][1])

54 print(len(point_mutation_sites))

55 unique_mut_sites = list(set(point_mutation_sites))

56 m_sites = []

57 for val in unique_mut_sites:

58 m_sites.append(point_mutation_sites.count(val))

59 unique_m_sites = list(set(m_sites))

60 unique_m_sites.sort(reverse=True)

61 m_sites_freq = []

62 for val in unique_m_sites:

63 m_sites_freq.append(m_sites.count(val))

64 m_sites_freq_cumulative = []

65 cum_sum = 0

66 for val in m_sites_freq:

67 cum_sum = cum_sum + val

68 m_sites_freq_cumulative.append(cum_sum)

69 plt.plot(unique_m_sites, m_sites_freq_cumulative, ’ko’)

70 plt.xlabel(’Mutation Count m’)

71 plt.ylabel(’Number of Sites’)

72 plt.title(’Sites Mutated m or More Times’)

73 plt.savefig(’AP237_PS3_Problem2_1.png’)

74 plt.show()

75 print(unique_m_sites)

76 print(m_sites_freq)

77 print(m_sites_freq_cumulative)

78

79 # Part C

80 mutations_genes = []

81 for i in range(len(data)):

82 if (data[i][3] == ’synonymous’ or data[i][3] == ’missense’

83 or data[i][3] == ’nonsense’ or data[i][3] == ’indel’) and data[i][2] != ’intergenic’:

84 mutations_genes.append(data[i][2])

85 print(len(mutations_genes))

86 unique_mut_genes = list(set(mutations_genes))

87 m_genes = []

88 for val in unique_mut_genes:

89 m_genes.append(mutations_genes.count(val))

90 unique_m_genes = list(set(m_genes))

91 unique_m_genes.sort(reverse=True)

92 m_genes_freq = []

93 for val in unique_m_genes:

94 m_genes_freq.append(m_genes.count(val))

95 m_genes_freq_cumulative = []

96 cum_sum = 0

97 for val in m_genes_freq:

98 cum_sum = cum_sum + val

99 m_genes_freq_cumulative.append(cum_sum)

100 plt.plot(unique_m_genes, m_genes_freq_cumulative, ’ko’)

101 plt.xlabel(’Mutation Count m’)

102 plt.ylabel(’Number of Genes’)

103 plt.title(’Genes Mutated m or More Times’)

104 plt.savefig(’AP237_PS3_Problem2_2.png’)

105 plt.show()

106 print(unique_m_genes)

23

107 print(m_genes_freq)

108 print(m_genes_freq_cumulative)

109

110 # Part D

111 # first make a list of lists of genes in each replicate

112 gene_lists = []

113 rep = 1

114 i = 0

115 while i < len(data):

116 g = []

117 while data[i][0] == rep:

118 if data[i][2] != ’intergenic’ and data[i][3] != ’structural’:

119 g.append(data[i][2])

120 i = i + 1

121 if i >= len(data):

122 break

123 if i < len(data):

124 rep = data[i][0]

125 gene_lists.append(g)

126 # create empirical saturation curve

127 num_subsets = 100

128 avg_mutated_genes = []

129 for n in range(3, 115):

130 total_avg_3_mut = 0

131 for i in range(num_subsets):

132 s = random.sample(gene_lists, n)

133 s_flattened = []

134 for l in s:

135 s_flattened = s_flattened + list(set(l)) # 3 or more *populations*

136 u_genes = list(set(s_flattened))

137 u_genes_freq = []

138 for val in u_genes:

139 u_genes_freq.append(s_flattened.count(val))

140 num_mut_3 = 0

141 for item in u_genes_freq:

142 if item >= 3:

143 num_mut_3 = num_mut_3 + 1

144 total_avg_3_mut = total_avg_3_mut + num_mut_3

145 avg_mutated_genes.append(total_avg_3_mut/num_subsets)

146 print(avg_mutated_genes[len(avg_mutated_genes)-1])

147 plt.plot(np.arange(3, 115), avg_mutated_genes, ’k-’)

148 plt.xlabel(’Subsample Size n’)

149 plt.ylabel(’Avg. Genes Mutated in 3 or More Pops.’)

150 plt.title(’Avg. 3+ Mutant Gene Frequency vs. Sample Size’)

151 plt.savefig(’AP237_PS3_Problem2_3.png’)

152 plt.show()

153

154 # Part E

155 n = np.arange(3, 115)

156 def sat_func(l):

157 return 1 - np.exp(-l)*(1+l+(0.5*l*l))

158 sat_1 = sat_func((3/114)*n)

159 sat_2 = sat_func((5/114)*n)

160 sat_3 = sat_func((10/114)*n)

24

161 plt.plot(n, sat_1)

162 plt.plot(n, sat_2)

163 plt.plot(n, sat_3)

164 plt.xlabel(’Number of Replicates n’)

165 plt.ylabel(’Prob. of 3+ Mutants in n Replicates’)

166 plt.title(’Theoretical 3+ Mut. Prob. Saturation Curves’)

167 plt.savefig(’AP237_PS3_Problem2_4.png’)

168 plt.show()

169

170 # Part F

171 rho_iclR_simultaneous = 0

172 rho = 0

173 iclR = 0

174 for i in range(len(gene_lists)):

175 if (’rho’ in gene_lists[i]) and (’iclR’ in gene_lists[i]):

176 rho_iclR_simultaneous = rho_iclR_simultaneous + 1

177 if ’rho’ in gene_lists[i]:

178 rho = rho + 1

179 if ’iclR’ in gene_lists[i]:

180 iclR = iclR + 1

181 print(rho_iclR_simultaneous)

182 print(rho)

183 print(iclR)

25

1 # Code for Problem 6 of Problem Set 3

2

3 import sys

4 import numpy

5 import pylab

6 from math import log

7

8 hk_len = 71

9 rr_len = 116

10

11 total_data = []

12 hks = []

13 file=open("../data_files/skerker_etal_hk_alignment.txt","r")

14 for line in file:

15 hks.append(line.strip())

16 total_data.extend(line.strip())

17 file.close()

18

19 total_data = set(list(total_data))

20

21 #for item in sorted(total_data):

22 # print item

23 #print len(total_data)

24

25 pylab.figure(1)

26 pylab.xlabel(’MI between pairs of HK & RR sites’)

27 pylab.ylabel(’Distribution’)

28 for file_idx in [1,2]:

29

30 MI_matrix = numpy.zeros((hk_len, rr_len))

31 num_AA_pairs = numpy.zeros((hk_len,rr_len))

32 I_vector_hk = numpy.zeros(hk_len)

33 I_vector_rr = numpy.zeros(rr_len)

34 rrs = []

35 file=open("../data_files/skerker_etal_rr_alignment_%d.txt" % file_idx, "r")

36 for line in file:

37 rrs.append(line.strip())

38 file.close()

39

40 for i in xrange(0,hk_len):

41 #print i

42 for j in xrange(0,rr_len):

43 hk_aas = {}

44 rr_aas = {}

45 joint_aas = {}

46 total = 0

47 for hk,rr in zip(hks,rrs):

48 hk_aa = hk[i]

49 rr_aa = rr[j]

50 if hk_aa == ’-’ or rr_aa == ’-’:

51 pass

52 else:

53 if hk_aa not in hk_aas:

54 hk_aas[hk_aa] = 0

26

55 hk_aas[hk_aa]+=1

56 if rr_aa not in rr_aas:

57 rr_aas[rr_aa] = 0

58 rr_aas[rr_aa]+=1

59 if (hk_aa,rr_aa) not in joint_aas:

60 joint_aas[(hk_aa,rr_aa)] = 0

61 joint_aas[(hk_aa,rr_aa)] += 1

62 total += 1.0

63

64 MI = 0

65 I_hk = 0

66 I_rr = 0

67 if True: #total > 1167: # Skerker et al thresholded on no more than 10% gaps

68

69 # normalize

70 for aa in hk_aas.keys():

71 hk_aas[aa] *= 1.0/total

72 for aa in rr_aas.keys():

73 rr_aas[aa] *= 1.0/total

74 for aa1,aa2 in joint_aas.keys():

75 joint_aas[(aa1,aa2)] *= 1.0/total

76

77 for aa1,aa2 in joint_aas.keys():

78 MI += joint_aas[(aa1,aa2)]*log(joint_aas[(aa1,aa2)]/hk_aas[aa1]/rr_aas[aa2])/log(2)

79

80 for aa in hk_aas.keys():

81 I_hk += -1*hk_aas[aa]*log(hk_aas[aa])/log(2)

82

83 for aa in rr_aas.keys():

84 I_rr += -1*rr_aas[aa]*log(rr_aas[aa])/log(2)

85

86 num_AA_pairs[i,j] = len(joint_aas.keys())

87 MI_matrix[i,j] = MI

88 I_vector_hk[i] = I_hk

89 I_vector_rr[j] = I_rr

90

91 max_MI = MI_matrix.max()

92 for i,j in zip(*numpy.nonzero(MI_matrix>=(max_MI*0.9))):

93 print i,j,MI_matrix[i,j],num_AA_pairs[i,j]

94

95 print "File %d, Mean MI=%g, Max MI=%g" % (file_idx, MI_matrix.mean(), MI_matrix.max())

96

97 print "Argmax:", numpy.unravel_index(numpy.argmax(MI_matrix, axis=None), MI_matrix.shape)

98

99 pylab.hist(MI_matrix.flatten(),bins=50,label=(’File %d’ % file_idx))

100 #pylab.figure()

101 #pylab.title(’Mutual information matrix’)

102 #pylab.ylabel(’HK Position’)

103 #pylab.xlabel(’RR Position’)

104 #c = pylab.pcolor(MI_matrix,vmin=0,vmax=0.8)

105 #(pylab.gcf()).colorbar(c, ax=pylab.gca())

106

107 #pylab.figure()

108 #pylab.plot(I_vector_hk)

27

109 #pylab.ylabel(’HK Entropy’)

110 #pylab.xlabel(’Position’)

111 #pylab.figure()

112 #pylab.plot(I_vector_rr)

113 #pylab.ylabel(’HK Entropy’)

114 #pylab.xlabel(’Position’)

115 #pylab.figure()

116 #pylab.plot(MI_matrix.max(axis=1))

117 #pylab.ylabel(’Max Mutual information w/ RR’)

118 #pylab.xlabel(’HK Position’)

119 #pylab.figure()

120

121 #pylab.show()

122 pylab.legend(loc=’upper right’,frameon=False)

123 pylab.savefig(’problem_6_a.pdf’,bbox_inches=’tight’)

28

