
APHYS 237/BIO 251 Problem Set 1

Solutions for Problem Set 1

Sample code is provided at the end of the document.1

Problem 1: Molecular evolution and genetic diversity in the influenza
virus

Part (a)

Figure 1: Number of single nucleotide differences between first HA gene sample (A/Aichi/2/1968)
and others as a function of sampling year.

Approximately ∼200 (more like 210-220) differences accumulated over ∼40 years. This
corresponds to roughly 12-13% of the HA gene.

1Written by: Anita Kulkarni, Zhiru Liu and Benjamin Good (last updated on April 25, 2023). The codes
were from a few years ago, when the problem numbers were a little bit different.

1

APHYS 237/BIO 251 Problem Set 1

Part (b)

Figure 2: Distribution of number of genetic differences between all pairs of strains from the same
year, aggregated across all years.

Most co-circulating strains vary at about 10 sites on average.

Bimodal distribution?
Some of you might be wondering – why is there a separate mode around 60 genetic
differences in the above distribution? We can look into this by explicitly plotting the
pairwise differences in each year separately, shown below. We see that the entire
“second mode” is coming from year 2003, which probably had two lineages of In-
fluenza A circulating (∼60 differences between lineages, and ∼10 differences within
each lineage.)

Figure 3: Genetic differences between pairs per year.

2

APHYS 237/BIO 251 Problem Set 1

Comparing this to the slope from part (a), we see that this corresponds to a turnover
time of ≈2-3 years.

Interpretation of the turnover time
From (a), we saw that the influenza population continues to diversify at a rate of
∼6 differences per year. However, the amount of genetic diversity at any given year
remains somewhat fixed at ∼10 differences. Some of the older strains must be going
extinct at a steady rate to maintain this level of diversity.
Here’s an analogy: say university S has 4,000 incoming student each year, and en-
rolls roughly 16,000 students year to year. This means that 4,000 students graduate
each year, and that the student population will completely turn over in 4 years. We
are calculating the turnover time for the influenza population with much of the same
reasoning here.

3

APHYS 237/BIO 251 Problem Set 1

Problem 2: The Luria-Delbrück experiment

Part (a)

At t = 0, there are N0 individuals without any antibiotic resistance, and at each subsequent
time step t we assume that all N(t) individuals divide, thus doubling the population (2N(t)
daughter cells). During this process, all daughter cells have an equal probability µ of
acquiring a mutation; thus, the mean number of new mutations produced in generation t
is

θ(t) = µN02
t

(Note that this formula is only valid for 1 ≤ t ≤ T .)

Part (b)

If a mutation arises at generation t, then it will have T−t generations to leave descendants
by growing exponentially. Thus,

n(t) = 2T−t

The total number of descendants left by all the mutants that arise at time t is m(t)n(t);
thus,

MT =
T∑
t=1

m(t)n(t) =
T∑
t=1

2T−tm(t)

Part (c)

Mean of MT :

⟨MT ⟩ = E

[
T∑
t=1

2T−tm(t)

]
=

T∑
t=1

E[2T−tm(t)] =
T∑
t=1

2T−tE[m(t)] =
T∑
t=1

2T−tθ(t)

=
T∑
t=1

2T−tµN02
t = µN02

T

T∑
t=1

1 = T ·N0µ · 2T

Use a similar approach for the variance (i.e. properties of the variance of linear combi-
nations of independent random variables, as each time point is independent), noting that
since m(t) is Poisson distributed its variance will be θ(t):

Var(MT) = Var

(
T∑
t=1

2T−tm(t)

)
=

T∑
t=1

Var(2T−tm(t)) =
T∑
t=1

22T−2tVar(m(t)) =
T∑
t=1

22T−2tθ(t)

=
T∑
t=1

22T−2tµN02
t = µN02

2T

T∑
t=1

2−t = µN04
T (1− 2−T) = µN02

T (2T − 1) ≈ N0µ · (2T)2

The Fano factor is thus

F =
2T − 1

T
≈ 2T

T

4

APHYS 237/BIO 251 Problem Set 1

F which is larger than the Poisson limit by a factor of 2T/T ≫ 1.
This suggests that we should be able to distingiush between the induction and mutation

hypotheses by calculating this Fano factor from the observed data. If the variance in the
number of colonies seen is much larger than the mean (i.e. there are a few plates with very
many colonies and the rest have no or very few colonies), then the mutation hypothesis
would be supported. If the mean and variance are similar (i.e. almost all of the plates
have just a few colonies), then the induction hypothesis would be supported.

Part (d)

First, calculate ⟨MT ⟩:

⟨MT ⟩ =
1

n

n∑
i=1

⟨MT,i⟩ =
n

n
µN0T2

T = T ·N0µ · 2T

Next, calculate Var(MT):

Var(MT) = Var

(
1

n

n∑
i=1

MT,i

)
=

1

n2
Var

(
n∑

i=1

MT,i

)
=

1

n
Var(MT) =

1

n
·N0µ · 2T (2T − 1)

After some algebra, we get that the coefficient of variation is

cV =
1

T

√
1− 2−T

nµN0

≈ 1

T
√
nN0µ

Setting this equal to ϵ and solving for n, we get that we need

n ≈ 1− 2−T

N0µϵ2T 2
≈ 1

N0µϵ2T 2

independent experiments to get O(ϵ) relative error. When N0µ ≪ 1, the CV and n get
very large; lots of experiments are needed to precisely estimate ⟨MT ⟩ and Var(MT) as the
mutation rate gets small.

Real numbers
It’s nice to get some intuition of the numbers here. For most bacteria, the mutation
rate is about µ = 10−9 per site per generation. For final population size of 108 cells
and growth period of 7 generations, and a desired error rate of 10%, we get

n ≈ 1

106 · 10−9 · 0.01 · 50
≈ 2000

That’s a lot!

5

APHYS 237/BIO 251 Problem Set 1

Part (e)

Calculate θ<(t|n), or the total number of mutations among all n populations expected to
arise before generation t:

n
t−1∑
j=1

θ(j) = n

t−1∑
j=1

N0µ2
j = nN0µ

t−1∑
j=1

2j = nN0µ(2
t − 2)

Set this equal to 1 to find t∗:

nN0µ(2
t∗ − 2) = 1 =⇒ 2t

∗
=

1

nN0µ
+ 2

=⇒ t∗ = log2

(
1

nN0µ
+ 2

)
≈ log2

(
1

nN0µ

)
(1)

By definition, this critical time t∗ only makes sense when t∗ ≤ T , which requires that

nN0µ2
T ≥ 1 (2)

(in other words, we should typically expect to have at least one mutation in one of the
replicates by the end of the experiment)

Using these expressions, we find that the typical mean is given by

⟨MT ⟩typ = ⟨MT ⟩typ =
T∑
t=1

2T−tθ̂(t|n) =
T∑

t=t∗

2T−tθ(t) = N0µ2
T (T − t∗ + 1)

and the typical variance is

Var(MT)typ =
1

n
Var(MT)typ =

1

n

T∑
t=t∗

22T−2tN0µ2
t =

1

n
N0µ2

T
[
2T−t∗+1 − 1

]
The coefficient of variation is therefore given by

cV =

√
Var(MT)typ

⟨MT ⟩typ
=

√
2T−t∗+1 − 1

(T − t∗ + 1)2nN0µ2T
(3)

=

√
2TnN0µ− 1

(T − t∗ + 1)2nN0µ2T
(4)

≈ 1

T − t∗
(5)

where we’ve dropped a lot of 1’s assuming T to be large. We see that the 1/Nµ dependence
is gone now, as long as we choose the experimental condition such that 1 ≤ t∗ ≤ T .
Plugging in our previous expression for t∗, we see that

cV =
1

T + log2(nN0µ)
∼ 1

log(n)
(6)

So the coefficient of variation does not decay as n−1/2 as we would expect from the central
limit theorem, but instead displays a much slower logarithmic decay.

6

APHYS 237/BIO 251 Problem Set 1

Part (f)

We know that M ′
T ∼ Poisson

(
N0

MT

NT

)
= Poisson

(
MT

2T

)
≡ Poisson(R) (we’re defining a new

random variable R ≡ MT/2
T). Then:

⟨M ′
T ⟩ = E[Poisson(R)] = E[R] =

1

2T
E[MT] =

1

2T
N0µT2

T = N0µT

To find the variance of M ′
T , use the formula Var(X) = E[Var(X|Y = y)]+Var(E[X|Y = y]):

Var(M ′
T |R) = R(= r) =⇒ E[R] = N0µT

E[M ′
T |R] = R(= r) =⇒ Var(R) =

1

4T
Var(MT) = N0µ(1− 2−T)

=⇒ Var(M ′
T) = N0µ(T + 1− 2−T)

So

F = 1 +
1− 2−T

T
≈ 1 +

1

T

which approaches the Poisson limit of F ≈ 1 when T ≫ 1. For example, for a dilution
factor of 2T = 100, we have T ≈ 6.7 and F ≈ 1.14 – a relatively small deviation from the
Poisson approximation we used in class.

7

APHYS 237/BIO 251 Problem Set 1

Problem 3: The E. coli genome

Part (a)

The genome is 4,629,812 bp long. The relative fractions are all roughly the same:

• A: 24.64%

• T: 24.59%

• C: 25.42%

• G: 25.35%

GC content
In the literature, people refer to the total proportion of G-C bases as “GC content.” In
this E. coli, the GC content is about half; however, GC content can vary a lot among
species (bacterial or not), and even within the chromosome (e.g. 35% to 60% across
100-Kb fragments in humans, cf Wikipedia).

Part (b)

20-mer occurrence distribution (this gives a general idea; note the log scale):

Figure 4: 20-mer occurrence distribution in E. coli genome.

99.2% of unique 20-mers appear only once (as a fraction of all unique 20-mers), and
97.4% of 20-mers in the E. coli genome appear exactly once. This shows that most (specif-
ically 97.4%) sites in the E. coli genome can be uniquely identified by a 20 bp sequence.

PCR primers
Usually, primers used in PCR reactions are about 20bp long. The total number of
possible 20-mer (∼ 1012) is orders of magnitude larger than the genome size of most
organisms (including humans, ∼ 109 bp), so we expect primers of this size to have
good specificity to locate a particular genome region.

8

APHYS 237/BIO 251 Problem Set 1

Part (c)

Figure 5: Distribution of gene lengths in E. coli genome.

4,217 genes account for 86.76% of the total genome length, and 52.15% of genes are
transcribed in the reverse direction.

Coding region size
In contrast, the protein coding region in higher organisms accounts for a much
smaller percentage of the genome. In humans, this number is only about 1 − 2%.
In some sense, bacterial genomes are much more “streamlined”, because they have
much smaller genome size and have to be more efficient.

Part (d)

The number of possible synonymous mutations (in the coding region) is 3,059,233, non-
sense mutations is 404,289, and missense mutations is 8,587,451.

My number is different from above! Do not worry to much about the exact num-
bers here – answers may vary depending on the definition of these three classes.
For example, when a stop codon mutated into a stop codon, did you count that as
synonymous or nonsense? (Both options makes sense!) However, the rough propor-
tion of these three classes should be consistent between reasonable implementations
– about three times as many missense as synonymous, and much fewer nonsense
mutations.

9

APHYS 237/BIO 251 Problem Set 1

Problem 4: Single Locus Simulations

We use the serial dilution model introduced in class as the microscopic model for the
single locus simulation. At the start of each cycle k, the number of mutant is Nm(k) and
the number of wild type is Nw(k), and the mutant frequency is

f(k) =
Nm(k)

Nm(k) +Nw(k)
(7)

After a day of exponential growth, the total number of cells become roughly Nf . γ ≡
Nf/N0 is the dilution factor, which in turn determines the number of generations per day
∆t = log2(γ). We could calculate the fraction of mutant type at the end of the day to be

f̃(k) =
f(k)es∆t

f(k)es∆t + (1− f(k))
(8)

Because new mutations are sufficiently rare, we can make the additional assumption that
each wild type cell acquires the mutation independently. Then, the starting population
sizes of the mutant and the wild type follow Poisson distributions

Nm(k + 1) ∼ Poisson
(
N0f̃(k)

)
+ Poisson

(
N0µ∆t(1− f̃(k))

)
Nw(k + 1) ∼ Poisson

(
N0(1− µ∆t)(1− f̃(k))

)
Note that Nm + Nw is a random number, and need not equal to N0 exactly. But for large
N0, the spread of this random number is small compared to the mean N0. Finally, we could
update the mutant frequency of the new day as

f(k + 1) =
Nm(k + 1)

Nm(k + 1) +Nw(k + 1)
(9)

Part (a)

In Fig.6, we first explored the neutral dynamics. When plotted on the linear time scale,
each trajectory varies greatly and the fixation/extinction event could take place at any
location of the plot. However, on log scale, it becomes clear that the rough time for
fixation/extinction is of order T = N0. We will stick to the log time scale when we scan
over different combination of parameters.

In Fig.7, we plotted nine different parameter combinations. The most notable feature
of the plots is that, the larger N0 and s, the smaller the fluctuation among different tra-
jectories. For N0 = 106, the two beneficial cases become essentially deterministic. The
selection coefficient also determines how fast the sweep finishes. Roughly, the sweep time
scales as 1/s. Lastly, the fixation/extinction time for neutral simulations scales with N0.

Part (b)

Now the mutation is turned on with rate µ = 10−5. Four deleterious simulations are shown
in Fig.8 separately to avoid overlapping. None of the run reaches high frequency, as is

10

APHYS 237/BIO 251 Problem Set 1

Figure 6: Single locus simulation with N0 = 103, γ = 100, µ = s = 0. 10 replicates are shown here.

expected for a deleterious mutation. However, because of the continuous input of new
mutants, there is always some mutants in the population. In fact, the order of magnitude
for the fraction of mutants is µ/|s| = 10−2. This dynamics is known as deleterious mutation-
selection-drift balance.

On the other hand, for a strongly beneficial mutation s = 10−2, the mutant always
sweep through the population (Fig.9). The start of the sweep is stochastic, and is deter-
mined by the population size N0 as well as the selection strength.

Connection to theoretical analysis
After seeing how to analyze the single-locus SDE in class, could you refer back to
these simulation results and interpret them using theoretical intuitions? Some of the
main features are already outlined above. The heuristic picture introduced in lecture
7&8 will be especially useful. In particular, think about

• What is the timescale for genetic drift in each of the simulations?

• At what frequency does selection become important in each of the simulations
(i.e. the drift barrier)?

• How fast does beneficial mutations sweep to fixation? How does that scale
with s?

11

APHYS 237/BIO 251 Problem Set 1

Figure 7: Scanning over 9 parameter combinations. Here, N0 = 102, 103, 106, s = 0, 10−3, 10−2,
µ = 0, and a dilution factor γ = 100. 10 replicates are shown for each combination.

12

APHYS 237/BIO 251 Problem Set 1

Figure 8: Trajectories of deleterious mutants. N0 = 104, µ = 10−5, s = −10−3 and the initial
mutant population is zero.

Figure 9: Trajectories of beneficial mutants. N0 = 104, µ = 10−5, s = 10−2 and the initial mutant
population is zero.

13

APHYS 237/BIO 251 Problem Set 1

Problem 5: Competitive fitness in a long term evolution experiment in
E. coli

Part (a)

The observed distribution of differences between replicate fitness measurements is shown
below:

0.00 0.05 0.10 0.15 0.20
S between replicates

0

20

40

60

80
Di

st
rib

ut
io

n

This shows that the typical errors are on the order of σS∼5%.

Part (b)

The estimated fitness trajectories for each population are shown in the colored lines below:

0 10000 20000 30000 40000 50000 60000
Time (generations)

0.0

0.2

0.4

Fi
tn

es
s,

S(
t)

Part (c)

The predicted trajectory, X(t) = Xc log(1 + v0t/Xc) is shown in the solid black line in
the plot in part (b) for Xc ≈ 4.6 × 10−2 and v0 = 7.7 × 10−4. It seems to be roughly
consistent with the data. The predicted fitness gain between generation 40, 000 and 50, 000
is ∆X ≈ 0.01, which is well within the range of uncertainty on the individual fitness
measurements above.

Part (d)

Using the more highly replicated fitness assays in the provided file, the fitness gains be-
tween generation 40,000 and 50,000 are shown for different replicate popluations below:

14

APHYS 237/BIO 251 Problem Set 1

Population

0.00

0.02

0.04

Fi
tn

es
s g

ai
n

be
tw

ee
n

 4
0k

 a
nd

 5
0k

The error bars denote ±2 standard errors, and the dashed line indicates the prediction
from the theoretical model in Part (c). An analogous figure for generation 50,000 to
60,000 is shown below:

Population

0.00

0.02

0.04

Fi
tn

es
s g

ai
n

be
tw

ee
n

 5
0k

 a
nd

 6
0k

In both cases, the error bars exclude 0 for most of the replicate populations, suggest-
ing that fitness is still improving in the Lenski experiment. (We note however, that the
statistical support for the predicted fitness trajectory is much weaker.)

15

APHYS 237/BIO 251 Problem Set 1

Problem 6: Pooled fitness assay

Part (a)

Given that each cycle is of length ∆t and each strain grows as Nk(t) = Nk(0)e
skt,

fk(∆t) =
Nk(∆t)∑K
i=1Ni(∆t)

=
Nk(0)e

sk∆t∑K
i=1Ni(0)esi∆t

=

1∑K
i=1 Ni(0)

esk∆tNk(0)

1∑K
j=1 Nj(0)

∑K
i=1Ni(0)esi∆t

=
fk(0)e

sk∆t∑K
i=1 fi(0)e

si∆t

Part (b)

If we neglect noise, the frequencies calculated in part a will be conserved during the di-
lution step and the next growth phase will be deterministic; the calculation will be akin
to that of part a once again. The calculation is also not dependent on completing a full
growth phase ∆t. It is thus easy to see that

fk(2 cycles) =
fk(0)e

2sk∆t∑K
i=1 fi(0)e

2si∆t

fk(n cycles) =
fk(0)e

nsk∆t∑K
i=1 fi(0)e

nsi∆t

fk(t) =
fk(0)e

skt∑K
i=1 fi(0)e

sit

Part (c)

Shift all si → s′i = si + c:

f ′
k(t) =

fk(0)e
(sk+c)t∑K

i=1 fi(0)e
(si+c)t

=
fk(0)e

sktect

ect
∑K

i=1 fi(0)e
sit

= fk(t)

Only knowing fk(t) (tracking strain frequencies over time) is not enough to determine the
absolute values of sk.

Part (d)

Let strain 0 be the wildtype with s0 = 0. Then

fk(t)

f0(t)
=

fk(0)e
skt

f0(0)es0t
=

fk(0)

f0(0)
eskt =⇒ Nk(t)

N0(t)
=

Nk(0)

N0(0)
eskt =⇒ Nk(t2)

N0(t2)

N0(t1)

Nk(t1)
= esk(t2−t1)

=⇒ sk =
1

t2 − t1
log

(
Nk(t2)N0(t1)

N0(t2)Nk(t1)

)

16

APHYS 237/BIO 251 Problem Set 1

Part (e)

The initial frequency of the wildtype (assume s0 = 0) is f0 and the initial frequencies of
the rest of the strains are (1 − f0)/K (since K is very large, it is safe to have K in the
denominator instead of K − 1). Plug these into our formula for fk:

fk(t) =
1−f0
K

eskt

f0 +
1−f0
K

∑K
i=1 e

sit

Now we want to find the “average” frequency trajectory for the trajectory of the focal
strain k. Since K is very large, by the central limit theorem, 1

K

∑K
i=1 e

sit can safely be
approximated by the mean ⟨esit⟩ = e

1
2
σ2t2 (technically we would need to pull out eskt from

the sum since presumably sk is fixed/known, but this shouldn’t matter much when K is
very large):

⟨fk(t)⟩ ≈
1−f0
K

eskt

f0 + (1− f0)e
1
2
σ2t2

Check if this is monotonic by looking for maxima/minima:

∂⟨f⟩
∂t

=
1− f0
K

1(
f0eskt + (1− f0)e

1
2
σ2t2−skt

)2 (−skf0e
−skt + (1− f0)(σ

2t− sk)e
1
2
σ2t2−skt

)
= 0

=⇒ −skf0 + (1− f0)(σ
2t− sk)e

1
2
σ2t2 = 0 =⇒ σ2t = sk

(
f0

1− f0
e−

1
2
σ2t2 + 1

)
If sk > 0 and t > 0, then both sides of the equation are positive and we get the following
situation:

So the frequency trajectory has a maximum at the t∗ that solves the following equation:

t∗ =
sk
σ2

(
f0

1− f0
e−

1
2
σ2t∗

2

+ 1

)

17

APHYS 237/BIO 251 Problem Set 1

Problem 7: Experimental evolution in a chemostat (in theory)

Part (a)

At steady state, n and c become constant, and the time derivatives ∂tn and ∂tc become
zero. We can set Eq. 8 to zero and find that

r(c∗) = δ . (10)

Notice that this equilibrium growth rate does not depend on cin!

Part (b)

Similar as above, we use the steady state condition to set Eq. 9 to zero and find that

δcin − δc∗ − r(c∗)n∗

V
= 0 (11)

⇒ n∗ = V (cin − c∗) ≈ V cin . (12)

Again, n∗ does not depend on the growth function r(c). This is because no matter what
the function form of r(c) is, the nutrient concentration will adjust to c∗ such that r(c∗) = δ.

Part (c)

The “adiabatic limit” is a common approximation in physics; here, it assumes that c
changes much more rapidly compared to n, and at any given moment, nutrient concen-
tration will approach a (temporary) steady state value given by ∂tc = 0. This steady state
value of c still changes over time, because of the slower dynamics of n(t). The nice thing
about this approximation is that we can reduce the number of dynamical variables in this
system to only one, i.e. n(t).

∂tc = 0 ≈ δcin − r(c)n/V ⇒ r(c) = δcinV/n (13)

Plugging the above into the equation for n(t), we get

∂tn = δ(cinV − n) (14)

The solution to this equation is an exponential relaxation toward the equilibrium value n∗

we found in Part (b),

n(t) = n∗ + (n(0)− n∗)e−δt . (15)

The rate of this exponential relaxation is simply set by δ.

18

APHYS 237/BIO 251 Problem Set 1

Part (d)

With two strains, we need to keep track of three dynamical variables, nwt, nmut and c. We
modify the model to be

∂tnwt = r(c)nwt − δnwt (16)
∂tnmut = (1 + s)r(c)nmut − δnmut (17)

∂tc = δcin − δc− 1

V
[r(c)nwt + (1 + s)r(c)nmut] (18)

Similar to Part (c), we set the equation for c to zero,

r(c) [nwt + (1 + s)nmut] = δcinV (19)

To find how the total population size changes, we add together Eq.(16) and (17):

∂tN = r(c)nwt + (1 + s)r(c)nmut − δN (20)
⇒ ∂tN = δcinV − δN (21)

where we have used Eq.(19) in the last step. (Notice that again, the explicit form of r(c)
did not matter.)

Part (e)

Since the equation for total population size is the same as the single-strain case, the steady
state population size should be n∗. If at time 0, N(0) = n∗, then the population size will
remain at this steady state level. The only thing that will change is the composition of
wild type v.s. mutants. We can derive an effective model for the mutant frequency as the
following:

∂tf(t) =
∂tnmut

N
= (1 + s)r(c)

nmut

N
− δ

nmut

N
(22)

= (1 + s)r(c)f(t)− δf(t) (23)

Using the adiabatic condition again (19),

∂tf =
(1 + s)δcinV

nwt + (1 + s)nmut

f − δf (24)

=
(1 + s)δN

N + snmut

f − δf (25)

= δ
(1 + s)

1 + sf
f − δf (26)

Expanding the fraction to lowest order in s, we finally get

∂tf = δ(1 + s− sf)f − δf (27)
= δsf(1− f) (28)

which has the same form as the serial dilution model in class.

19

APHYS 237/BIO 251 Problem Set 1

Part (f)

Assuming that the vessel is well-mixed, then the probability that a particular cell gets
diluted out is

Pr[diluted] = δ∆t (29)

The total number of wild-type or mutant cells getting diluted each timestep follow a bino-
mial distribution (nwt or nmut coin flips with above probability). The variance is then

Var(nwt) = nwtδ∆t(1− δ∆t) ≈ nwtδ∆t (30)

(same form for nmut.) This is similar to the Poisson noise in the serial dilution model in
class.

20

APHYS 237/BIO 251 Problem Set 1

Sample code for Problem Set 1

1 # Code for Problem 1 of Problem Set 1

2

3 # -*- coding: utf-8 -*-

4 """

5 Created on Tue Jan 21 01:05:31 2020

6

7 @author: Anita Kulkarni

8 """

9

10 import matplotlib.pyplot as plt

11

12 f = open("../data_files/problem_set_data/influenza_HA_dna_sequences.fasta", "r")

13 data = f.readlines()

14 sequences = [] # sequences is a list of tuples (year integer, DNA sequence string)

15

16 for i in range(0, len(data), 2): # lines alternate between label (year, location, etc.) and seq

17 year = int(data[i][-5:-1])

18 seq = data[i+1][:-1]

19 sequences.append((year, seq))

20

21 ref_seq = sequences[0][1] # first sequence (Aichi, 1968) is reference sequence

22 print(len(ref_seq))

23

24 sequences.sort(key=lambda tup: tup[0]) # sort list of tuples by year

25

26 def compare_seq(s0, s1): # number of differences between two sequences

27 diff = max((len(s0),len(s1))) - min((len(s0),len(s1))) # difference in length

28 for i in range(min((len(s0), len(s1)))):

29 if s0[i] != s1[i]:

30 diff = diff + 1

31 return diff

32

33 num_differences = []

34 years = []

35 for i in range(len(sequences)):

36 num_differences.append(compare_seq(ref_seq, sequences[i][1]))

37 years.append(sequences[i][0])

38 plt.plot(years, num_differences, ’o’)

39 plt.xlabel("Year")

40 plt.ylabel("Single-Nucleotide Differences from First Sample")

41 plt.title("Problem 1A")

42 plt.tight_layout()

21

APHYS 237/BIO 251 Problem Set 1

43 plt.savefig("AP237_PS1_Problem1A.png")

44 plt.show()

45

46 unique_years = list(set(years))

47 unique_years.sort()

48 # number of sequences for each year

49 year_counts = [years.count(unique_years[y]) for y in range(len(unique_years))]

50

51 pointer = 0

52 pairwise_diffs = []

53 for i in range(len(unique_years)):

54 year_sequences = []

55 for j in range(year_counts[i]):

56 year_sequences.append(sequences[pointer+j][1])

57 pointer = pointer + year_counts[i]

58 for s in range(year_counts[i]):

59 if year_counts[i]-s >= 1:

60 for S in range(s+1, year_counts[i]):

61 pairwise_diffs.append(compare_seq(year_sequences[s], year_sequences[S]))

62 plt.hist(pairwise_diffs, bins=30)

63 plt.xlabel("Number of Pairwise Differences Between Samples in a Given Year")

64 plt.ylabel("Frequency")

65 plt.title("Problem 1B")

66 plt.tight_layout()

67 plt.savefig("AP237_PS1_Problem1B.png")

68 plt.show()

22

APHYS 237/BIO 251 Problem Set 1

1 # Code for Problem 7 of Problem Set 1

2

3 # -*- coding: utf-8 -*-

4 """

5 Created on Tue Jan 14 23:17:40 2020

6

7 @author: Anita Kulkarni

8 """

9

10 import numpy as np

11 import matplotlib.pyplot as plt

12

13 f1 = open("../data_files/ecoli_reference_genome.fasta", "r")

14 f1.readline()

15 genome = f1.readline()

16 f1.close()

17 f2 = open("../data_files/ecoli_genes.txt", "r")

18 genes = f2.readlines()

19 del(genes[0])

20 for i in range(len(genes)):

21 genes[i] = genes[i].split(", ")

22 del(genes[i][0])

23 genes[i][0] = int(genes[i][0])-1

24 genes[i][1] = int(genes[i][1])

25 if genes[i][2][0] == ’f’:

26 genes[i][2] = 1

27 else:

28 genes[i][2] = 0

29 f2.close()

30

31 len_genome = len(genome)

32 print(len_genome)

33 letter_counts = [0,0,0,0] #A, T, C, G

34 for i in range(len_genome):

35 if genome[i] == ’A’:

36 letter_counts[0] = letter_counts[0] + 1

37 elif genome[i] == ’T’:

38 letter_counts[1] = letter_counts[1] + 1

39 elif genome[i] == ’C’:

40 letter_counts[2] = letter_counts[2] + 1

41 elif genome[i] == ’G’:

42 letter_counts[3] = letter_counts[3] + 1

43 letter_counts = np.array(letter_counts)

44 letter_frequencies = letter_counts/np.sum(letter_counts)

45 print(letter_frequencies)

23

APHYS 237/BIO 251 Problem Set 1

46

47 twenty_mers = {}

48 for i in range(0, len_genome-20):

49 seq = genome[i:i+20]

50 if seq in twenty_mers:

51 twenty_mers[seq] = twenty_mers[seq] + 1

52 else:

53 twenty_mers[seq] = 1

54 twenty_mer_frequencies = list(twenty_mers.values())

55 occ_list = list(set(twenty_mer_frequencies))

56 occ_list.sort()

57 twenty_mer_freq_dist = []

58 for val in occ_list:

59 twenty_mer_freq_dist.append(twenty_mer_frequencies.count(val))

60 print(occ_list)

61 print(twenty_mer_freq_dist)

62 print(twenty_mer_freq_dist[0]/sum(twenty_mer_freq_dist))

63

64 num_genes = len(genes)

65 print(num_genes)

66 gene_lengths = []

67 num_reverse = 0

68 for i in range(len(genes)):

69 gene_lengths.append(genes[i][1]-genes[i][0])

70 if genes[i][2] == 0:

71 num_reverse = num_reverse + 1

72 print(sum(gene_lengths))

73 print(sum(gene_lengths)/len(genome))

74 print(num_reverse/num_genes)

75 gene_lengths_unique = list(set(gene_lengths))

76 gene_lengths_unique.sort()

77 gene_lengths_freq_dist = []

78 for val in gene_lengths_unique:

79 gene_lengths_freq_dist.append(gene_lengths.count(val))

80 plt.hist(gene_lengths, bins=np.arange(0, 99*int(gene_lengths_unique[len(gene_lengths_unique)-1]/99)+198, 99))

81 plt.xlabel("Gene Length (Base Pairs)")

82 plt.ylabel("Frequency")

83 plt.title("Problem 7C")

84 plt.savefig("AP237_PS1_Problem7C.png")

85 plt.show()

86

87 codons = {’TTT’:’F’, ’TCT’:’S’, ’TAT’:’Y’, ’TGT’:’C’,

88 ’TTC’:’F’, ’TCC’:’S’, ’TAC’:’Y’, ’TGC’:’C’,

89 ’TTA’:’L’, ’TCA’:’S’, ’TAA’:’STOP’, ’TGA’:’STOP’,

90 ’TTG’:’L’, ’TCG’:’S’, ’TAG’:’STOP’, ’TGG’:’W’,

24

APHYS 237/BIO 251 Problem Set 1

91 ’CTT’:’L’, ’CCT’:’P’, ’CAT’:’H’, ’CGT’:’R’,

92 ’CTC’:’L’, ’CCC’:’P’, ’CAC’:’H’, ’CGC’:’R’,

93 ’CTA’:’L’, ’CCA’:’P’, ’CAA’:’Q’, ’CGA’:’R’,

94 ’CTG’:’L’, ’CCG’:’P’, ’CAG’:’Q’, ’CGG’:’R’,

95 ’ATT’:’I’, ’ACT’:’T’, ’AAT’:’N’, ’AGT’:’S’,

96 ’ATC’:’I’, ’ACC’:’T’, ’AAC’:’N’, ’AGC’:’S’,

97 ’ATA’:’I’, ’ACA’:’T’, ’AAA’:’K’, ’AGA’:’R’,

98 ’ATG’:’M’, ’ACG’:’T’, ’AAG’:’K’, ’AGG’:’R’,

99 ’GTT’:’V’, ’GCT’:’A’, ’GAT’:’D’, ’GGT’:’G’,

100 ’GTC’:’V’, ’GCC’:’A’, ’GAC’:’D’, ’GGC’:’G’,

101 ’GTA’:’V’, ’GCA’:’A’, ’GAA’:’E’, ’GGA’:’G’,

102 ’GTG’:’V’, ’GCG’:’A’, ’GAG’:’E’, ’GGG’:’G’}

103

104 syn = -sum(gene_lengths) # don’t double-count replacements of same nucleotide

105 non = 0

106 mis = 0

107 nuc = [’A’,’T’,’C’,’G’]

108 for i in range(len(genes)):

109

110 forward_gene = genome[genes[i][0]:genes[i][1]]

111 reversed_gene = genome[genes[i][1]:genes[i][0]:-1]

112

113 #print len(forward_gene)

114 #print len(reversed_gene)

115 if genes[i][2] == 1: # non-reversed gene

116 gene = forward_gene

117 else: # reversed gene

118 gene = reversed_gene

119 for j in range(0, len(gene), 3):

120 codon = gene[j:j+3]

121 aa = codons[codon]

122 for n in nuc:

123 new_codon = ’’.join((n, gene[j+1], gene[j+2]))

124 new_aa = codons[new_codon]

125 if new_aa == aa:

126 syn = syn + 1

127 elif new_aa == ’STOP’:

128 non = non + 1

129 else:

130 mis = mis + 1

131 new_codon = ’’.join((gene[j], n, gene[j+2]))

132 new_aa = codons[new_codon]

133 if new_aa == aa:

134 syn = syn + 1

135 elif new_aa == ’STOP’:

25

APHYS 237/BIO 251 Problem Set 1

136 non = non + 1

137 else:

138 mis = mis + 1

139 new_codon = ’’.join((gene[j], gene[j+1], n))

140 new_aa = codons[new_codon]

141 if new_aa == aa:

142 syn = syn + 1

143 elif new_aa == ’STOP’:

144 non = non + 1

145 else:

146 mis = mis + 1

147 print(syn)

148 print(non)

149 print(mis)

26

APHYS 237/BIO 251 Problem Set 1

1 ### Code for Problem 4 on Problem Set 1

2

3 import numpy

4 import pylab

5 from math import log

6 import sys

7

8

9 # Part A

10

11 # Load data from file

12 file = open("../data_files/LTEE_ancestor_fitness_assays.txt","r")

13 file.readline() # ignore header

14 records = []

15 for line in file:

16 items = line.split(",")

17 population = items[0].strip()

18 t = float(items[1])

19

20 NE0 = float(items[2]) # evolved strain counts at time 0

21 NA0 = float(items[3]) # ancestor strain counts at time 0

22 NEF = float(items[4]) # evolved strain counts at time 1

23 NAF = float(items[5]) # ancestor strain counts at time 1

24

25 records.append((population,t,NE0,NA0,NEF,NAF))

26

27

28 fitness_data_map = {}

29 dt = numpy.log2(100.0) # these measurements were carried out with 100-fold dilution

30 # Collate by population and timepoint

31 for population,t,NE0,NA0,NEF,NAF in records:

32

33 if population not in fitness_data_map:

34 fitness_data_map[population] = {}

35

36 if t not in fitness_data_map[population]:

37

38 fitness_data_map[population][t] = []

39

40 # Calculate fitness:

41

42 s = 1.0/dt * log(NEF/NAF/(NE0/NA0))

43

44 fitness_data_map[population][t].append(s)

45

27

APHYS 237/BIO 251 Problem Set 1

46 # Calculate differences between replicate measurements

47 deltas = []

48 for population in sorted(fitness_data_map):

49 for t in sorted(fitness_data_map[population]):

50 ss = fitness_data_map[population][t]

51

52 # Look at all distinct pairs of replicates

53 for i in xrange(0,len(ss)):

54 for j in xrange(i+1,len(ss)):

55 delta = numpy.fabs(ss[i]-ss[j])

56 deltas.append(delta)

57

58 pylab.figure(figsize=(3,2))

59 pylab.xlabel(’ΔS between replicates’)

60 pylab.ylabel(’Distribution’)

61 pylab.hist(deltas)

62 pylab.savefig(’problem_4_a.pdf’,bbox_inches=’tight’)

63

64 # Part B and C

65 pylab.figure(figsize=(5,2))

66 pylab.xlabel(’Time (generations)’)

67 pylab.ylabel(’Fitness, S(t)’)

68 for population in sorted(fitness_data_map):

69 ts = []

70 savgs = []

71 for t in sorted(fitness_data_map[population]):

72 ss = numpy.array(fitness_data_map[population][t])

73 savg = ss.mean()

74 ts.append(t)

75 savgs.append(savg)

76

77

78 pylab.plot(ts,savgs,’.-’)

79

80 theory_ts = numpy.linspace(1,60000)

81 Xc = 4.6e-02

82 v0 = 7.7e-04

83 theory_ss = Xc*numpy.log(1+v0*theory_ts/Xc)

84 pylab.plot(theory_ts,theory_ss,’k-’,linewidth=1)

85 pylab.savefig(’problem_4_bc.pdf’,bbox_inches=’tight’)

86

87 sys.stdout.write("Predicted gain from 40k to 50k is: %g\n" % (Xc*numpy.log(1+v0*5e04/Xc)-Xc*numpy.log(1+v0*4e04/Xc)))

88

89 # Part D

90 # Load other data file

28

APHYS 237/BIO 251 Problem Set 1

91

92 # Load data from file

93 file = open("../data_files/LTEE_40k_fitness_assays.txt","r")

94 file.readline() # ignore header

95 records = []

96 for line in file:

97 items = line.split(",")

98 population = items[0].strip()

99 t = float(items[1])

100

101 NE0 = float(items[2]) # evolved strain counts at time 0

102 NA0 = float(items[3]) # ancestor strain counts at time 0

103 NEF = float(items[4]) # evolved strain counts at time 1

104 NAF = float(items[5]) # ancestor strain counts at time 1

105

106 records.append((population,t,NE0,NA0,NEF,NAF))

107

108

109 fitness_data_map = {}

110 dt = 3*numpy.log2(100.0) # these measurements were carried out over 3 days

111 # Collate by population and timepoint

112 for population,t,NE0,NA0,NEF,NAF in records:

113

114 if population not in fitness_data_map:

115 fitness_data_map[population] = {}

116

117 if t not in fitness_data_map[population]:

118

119 fitness_data_map[population][t] = []

120

121 # Calculate fitness:

122

123 s = 1.0/dt * log(NEF/NAF/(NE0/NA0))

124

125 fitness_data_map[population][t].append(s)

126

127 for min_t,max_t in [(4e04,5e04),(5e04,6e04)]:

128 pylab.figure(figsize=(5,2))

129 pylab.ylabel(’Fitness gain between \n %dk and %dk’ % (min_t/1000,max_t/1000))

130 pylab.xlabel(’Population’)

131 pylab.ylim([-0.01,0.05])

132 current_idx = 0

133 for population in sorted(fitness_data_map):

134 current_idx+=1

135

29

APHYS 237/BIO 251 Problem Set 1

136 ss = numpy.array(fitness_data_map[population][min_t])

137 s0 = ss.mean()

138 ds0 = ss.std()/(len(ss)*1.0)**0.5

139

140 ss = numpy.array(fitness_data_map[population][max_t])

141 sf = ss.mean()

142 dsf = ss.std()/(len(ss)*1.0)**0.5

143

144 s = sf-s0

145 ds = (ds0**2+dsf**2)**0.5

146

147 pylab.plot([current_idx],[s],’k.’)

148 pylab.plot([current_idx,current_idx],[s-2*ds,s+2*ds],’k-’)

149

150

151 # theory line

152 predicted_ds = Xc*numpy.log(1+v0*max_t/Xc)-Xc*numpy.log(1+v0*min_t/Xc)

153

154 pylab.plot([0,current_idx+1],[predicted_ds,predicted_ds],’k:’)

155 pylab.gca().set_xticklabels([])

156 pylab.savefig(’problem_4_d_%dk.pdf’ % (max_t/1000))

30

