
Chapter �

Mathematical Preliminaries
and Notation

A quantitative understanding of evolution will require the language of math-
ematics, so we’ll have to spend a little time reviewing the relevant concepts and
establishing a common notation. We’ll assume you have a general comfort with
manipulating equations, calculus, and basic di�erential equations (ODEs).�

However, there is one set of concepts that you might not have seen in pre-
vious math or physics courses, but will be extremely useful for studying evolu-
tionary problems. These methods fall under the general headings of series ex-
pansions / asymptotic approximations / self-consistency arguments.

�.� Series expansions / asymptotic approximations
We can illustrate these concepts with a simple example which we already know
how to solve. Suppose we want to �nd the positive root of the quadratic equa-

�See theMathematical Background document for more details: https://bgoodlab.github.io/cours
es/apphys237/math_background.pdf.
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tion

✏ · x
2 + x� 1 = 0 (�.�)

Using the quadratic formula, we can see that this equation has one positive root:

x =
�1 +

p
1 + 4✏

2✏
⌘ F (✏) (�.�)

which we can write as some arbitrary function of ✏.
As anticipated by our choice of variables, we will often want to understand

the behavior of this function in certain limits, e.g. as ✏ ! 0. We can do this by
performing a Taylor series of F (✏) around ✏ = 0:

x = F (0) + F
0(0) · ✏+ . . . (�.�)

In this case, we �nd� that:

x = (1)|{z}
leading order

+ (�✏)|{z}
next order

+ . . .|{z}
(h.o.t.)

(�.�)

We’ll call the �rst (non-zero) term in an expansion like this the leading-order
term, and we’ll call next one the next-order term (and so on for the higher-
order terms, or h.o.t.).

When ✏ is small, each term in this expansion will often be smaller than the
one before it, and this suggests a natural approximation scheme for x. Themost
extreme version is to take the leading-order term and forget the rest. This is how
we’ll often look at these expansions: the leading-order term will tell us how to
approximate x, and the next-order termwill tell us how “good” that approxima-
tion is.

�WolframAlpha can be really useful for calculating series expansions, so feel free to use it if you want to save
yourself some time. You can use a query like “expand (-�+sqrt(�+�*epsilon))/(�*epsilon) around epsilon=�”
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In other words, we expect that F (0) will be a good approximation for x if
the next-order term is much smaller:

F
0(0)✏⌧ F (0) . (�.�)

We can also write this in terms of ✏ as

✏⌧ ✏
⇤
⌘

F (0)

F 0(0)
. (�.�)

In this example, we have F (0) = 1 and ✏⇤ = 1, so we will write this as

x ⇡ 1; (✏⌧ 1) (�.�)

and read it as “x is approximately equal to �when ✏ is much smaller than �”.

�.�.� Dominant balance
The use of a Taylor expansion to approximate a function will likely be familiar
to many readers. What may be slightly less familiar is that one can do this whole
process directly from Eq. (�.�) using a technique known as themethod of dom-
inant balance.

This technique gets its name from the observation that, for a random equa-
tion involvingmultiple terms, it will often be the case that two of them aremuch
larger than the others, and are therefore providing the dominant contribution
to balance-ing the two sides of the equation. This leads to an approximation
method that involves two steps:

• Step �. We �rst guess that one of the terms (in this case, ✏x2) is much
smaller than the others (i.e., we guess that x and �1 are providing the
dominant balance in the equation). This yields a much simpler equation,

x� 1 ⇡ 0 , (�.�)

which allows us to obtain the leading-order approximation:

x ⇡ 1 . (�.�)
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• Step �. We can then substitute this solution to the original equation to
check whether the approximation is self-consistent. In this case, the ne-
glected term would be equal to

✏x
2
⇡ ✏(1)2 ⇡ ✏ (�.��)

so the assumption that ✏x2 is smaller than the other two terms (x and�1)
will be self-consistent if

✏⌧ 1 . (�.��)

This self-consistency argument will naturally tell us if we had guessed wrong at
the beginning. E.g. if we had assumed that the dominant balance was between
the ✏x2 and�1 terms (and that the x termwas negligible) we would have found
that

✏x
2
� 1 ⇡ 0 =) x ⇡

1
p
✏
� 1 , (�.��)

which would have contradicted our assumption that x⌧ 1. Thus, a good (but
rather brute force) is can be to try all the possible dominant balances, and see
which ones are self-consistent.

Another nice feature of this approach is that it tells us when our leading-
order approximation will break down. E.g., if we had started from the slightly
di�erent quadratic equation,

100 · ✏ · x
2 + x� 1 = 0 , (�.��)

we would have found the same leading-order approximation, but with a slightly
di�erent condition of validity:

✏⌧
1

100
, (�.��)
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which is much smaller than above. We can compare this to the more traditional
math notation, lim✏!0 x = 1, which gives us little indication of the region of
validity. This feature can be really important whenwe start making connections
to data and experiments. A big theme of this course will be �guring out leading
order approximations (x ⇡ 1) as well as their regions of validity (✏ ⌧ 1) for a
variety of evolutionary problems.

Higher-order corrections. Wecanuse an extensionof this dominantbalance
approach calculate the next-order correction:

• Step �.We guess that x is approximately equal to the leading-order term,
plus a small correction:

x ⇡ 1 + �  correction term (�.��)

• Step �.We then substitute this guess intoEq. (�.�), expand to lowest order
in �, and solve:

✏(1 + �)2 + (1 + �)� 1 ⇡ 0

#

✏(1 + 2�) + (1 + �)� 1 ⇡ 0

#

� =
�✏

1 + 2✏
⇡ �✏ (�.��)

where we have kept only the leading-order contribution in ✏. We can ver-
ify that this answer is self-consistent by checking that � is small compared
to the leading order term (as we assumed in step �):

|�|⌧ 1 =) ✏⌧ 1 (�.��)

We notice that this is the same condition required for the leading-order
approximation to be valid.
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Approximations for other regimes. Wecould have used this same approach
tounderstand the behavior in the opposite limitwhere ✏!1. From theTaylor
expansion of the quadratic formula in Eq. (�.�), we have

x ⇡
1
p
✏
�

1

2✏
; (✏� 1) (�.��)

Can you derive this result using the dominant balance procedure above?

Why is this useful? This whole approximation procedure might seem like
a lot of work, given that we could have just directly calculated the answer —
for any value of ✏— from our original quadratic formula in Eq. (�.�). The real
payo� comes from the fact that the dominant balance approach still works even
when the exact solution is not known. E.g., if we were instead interested in the
solution to the quintic equation

✏ · x
5 + x� 1 = 0 (�.��)

then a famous result from group theory tells us that there is no analytical so-
lution. However, all of our approximations above still work, and are not really
any harder to carry out. This is left as an exercise for the reader. In contrast to
some of your other physics and math courses, which tend to emphasize prob-
lems that are solvable like Eq. (�.�), we’ll see that vast majority of the problems
we’ll encounter in evolutionary settings will be more like Eq. (�.��). Approxi-
mation methods will therefore be very useful for us for understanding what is
going on.

While these approximations might seem restrictive, they can be surprisingly
useful in practical contexts, e.g. when we are interested in making connections
to data. One reason for this is that, given all the possible values of ✏, the vast
majority will have an order-of-magnitude that is either much larger than one or
much less than one. Some degree of �ne-tuning would be needed for a com-
pletely random�value of ✏ to be of order 1. This means that in practice, we can

�There is some subtlety in this argument, in that it assumes that we are ignorant order-of-magnitude of ✏, in
addition to its precise value.
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Figure �.�: Comparing the exact and approximate solutions to the quadratic
equation in Eq. (�.�). In this case, the asymptotic approximations are always
within a factor of � of the exact answer— and often much closer than that.

often get a lot of mileage out of our ✏⌧ 1 and ✏� 1 approximations (Fig. �.�).
Moreover, in the subset of cases where this dichotomy breaks down, it will often
signal that there is some additional physical or biological process that is respon-
sible for tuning the value of ✏ to be close to 1. In this way, enumerating the pos-
sible asymptotic regimes (and comparing them to data) can be a useful engine
of discovery in its own right. We will see several examples of this throughout the
course.

Finally, while we have illustrated our dominant balance method using poly-
nomial equations, this same basic approach alsoworks for di�erential equations,
stochastic di�erential equations, integrals, and many other problems.�. So we

�Youcan take awhole course on these topics. If you are interested in learningmore, I highly recommendMichael
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will utilize this techniquemany times throughout this course (and will illustrate
with more concrete examples as we go along).

�.� Randomness and Probability
Since many aspects of evolution are stochastic, the other big tool we’ll need is
probability theory.

Random variables. We’ll assume that you are familiar with the concept of a
random variable, x̂, which is distributed according to some probability distri-
bution p(x):

 

We’ll often write this as x̂ ⇠ p(x) [pronounced “x is distributed according to
the distribution p(x)”]. If we’re getting sloppy, we might drop the hat.

Means and variances. The average / mean / expected value of x̂ will be
denoted by

hxi ⌘ E[x] ⌘
Z

x · p(x) dx , (�.��)

Brenner’s Physical Mathematics (http://esag.harvard.edu/rice/AM201_Brenner,Michael_Course
Notes_2010.pdf) or Hinch’s PerburbationMethods book.
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while the variance (ormean squared deviation) is de�ned by

Var(x) ⌘ �
2
x
⌘ hx

2
i � hxi

2
. (�.��)

and satis�es the scaling propertyVar(c · x) = c
2Var(x).

Commondistributions. Wewill assume that you are familiarwith somecom-
mon probability distributions. These include discrete distributions like the bi-
nomial distribution,

n ⇠ Binomial(N, p) =) P (n) =

✓
N

n

◆
p

n(1� p)N�n (�.��)

whichmodels the number of successes inN independent coin �ips with success
probability p, as well as the Poisson distribution,

n ⇠ Poisson(hni) =) P (n) =
hni

n

n!
e
�hni (�.��)

which is the limiting formof the Binomial distributionwhenN !1 and p!
0 with hxi = Np held �xed. Another common distribution we’ll encounter is
theGaussian orNormal distribution,

x ⇠ Gaussian(µ, �2) =) p(x) =
1

p
2⇡�2

e
�

x2

2�2 , (�.��)

which has mean hxi = µ and variance �2. To save space, we will sometimes
write this as x ⇠ N(µ, �2).

Note:Wikipedia is extremelyuseful for commonprobability distributions.� It lists
formulas for the means, variances, and other moments (when they are known), as
well as useful identities connecting the di�erent distributions.

�e.g. https://en.wikipedia.org/wiki/Binomial_distribution.
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Joint distributions. We’ll also assume you’re familiar with the concept of a
joint distribution of � (or more) random variables:

p(x, y) = “probability that x̂ = x and ŷ = y at the same time” (�.��)

If we know the joint distribution, we can calculate the single-variable distribu-
tion (also known as the marginal distribution) for one of the variables by
integrating over the possible values of the other

p(x) ⌘

Z
p(x, y) dy (�.��)

which is sometimes known as the law of total probability. We can also de�ne
the conditional probability,

p(x|y) ⌘
p(x, y)

p(y)
⌘ “probability of x given y” (�.��)

An important concept is statistical independence, which occurs when the
joint distribution factorizes:

p(x, y) = p(x)p(y) (�.��)

Using the de�nition of the conditional probability in Eq. (�.��), we can equiva-
lently write this as

p(x|y) = p(x) () “x is independent of y” (�.��)

Using the de�nitions above, one can show that for independent random vari-
ables,

Var(x+ y) = Var(x) + V ar(y) (�.��)

(This is left as an exercise for the reader.)
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MomentGenerating Functions. One topic thatmightbenew is the concept
of amoment generating function, de�ned by

Hx(z) ⌘ he
�zx
i =

Z
e
�zx

p(x) dx . (�.��)

We can also view this as the Laplace transform of the probability density p(x)
(or the Fourier transform if we considered imaginary values of z). One can show
that the moment generating function contains all the same information as the
probability density p(x), so either one of them will su�ce for describing the
distribution of x. For example, the moment generating function of a Poisson
distribution is given by

Poisson(hni) () Hn(z) = e
�hni(1�e

�z) (�.��)

while the moment generating function of the Gaussian distribution is

Gaussian(µ, �2) () Hn(z) = e
�µz+�2

2 z
2

(�.��)

Why are moment generating functions useful? As their name implies, they are
closely connected to themoments ofx. Ifwe expand the exponential inEq. (�.��)
for small values of z, we see that

Hx(z) =

Z 
1� zx+

1

2
z

2
x

2 + . . .

�
p(x) dx

= 1� zhxi+
z

2

2
hx

2
i+ . . . (�.��)

so expandingHx(z) around z = 0 lets us read o� the moments of x. A useful
shortcut is that ifwe can expressHx(z) as an exponential of some function�(x),
then

Hx(z) = e
�(x) =) �(x) ⇡ �hxi · z +

1

2
· Var(x) · z

2 + . . . (�.��)
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(This is left as an exercise for the reader.)
The big payo� formoment generating functions is that for independent ran-

dom variables, the generating function of their sum satsi�es

Hx+y(z) ⌘ he
�z(x+y)

i = he�zx
· e
�zy
i = he�zx

i| {z }
Hx(z)

· he
�zy
i| {z }

Hy(z)

(�.��)

This is much easier to calculate than computing the density function of x + y

directly.
For related reasons, we will see that inmany evolution problems it will often

be easier to solve for the generating function H(z) and then invert Eq. (�.��)
if we need to �nd p(x). In practice, this is easiest to do by remembering the
generating function for commondistributions and then inverting by inspection,
as in Eqs. (�.��) and (�.��). (Wikipedia can be extremely useful for this task.)

Central LimitTheorem. Finally, an extremely important result for this course
will be the central limit theorem. IfX1, X2, . . . , Xn are independent random
variables, then for su�ciently large n,

nX

i=1

Xi ⇡ Gaussian

"
X

i

hxii,

X

i

Var(xi)

#
(�.��)

for certain classes ofXi. If theXi all the same mean and variance, we will often
write this as

1

n

nX

i=1

Xi ⇡ hxi±

r
Var(X)

n
(�.��)

which shows that the spread of the mean of a bunch of observations scales like
1/
p
nwhenn is large. Wewill explore the limits of this approximationwhenwe

consider the Luria-Delbrück experiment in Problem Set �.
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�.�.� Some intuition about random variables.
Probability is hard because it forces us to reason a whole range of outcomes all
at once. In practice, we’ll often want some way of summarizing the “typical”
behavior. There are two main classes of behavior that we will encounter.

• Case � (“fuzzy noise”). In some cases, the distribution of a random
variable x will be concentrated around its average value hxi, with a small
amount of spread �:

 

An example would be a Binomial(N, p) distribution when Np � 1,
or the sum of large number of random variables under the central limit
theorem. In these cases, the average of xwill often be a good summary of
its typical behavior (similar to our everyday usage of theword “average”).

• Case � (“jagged noise”). In other cases, the distribution of x can acquire
a bimodal shape:
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with most of the probability concentrated at one value (x0) and a small
probability p of having another value (x1). An example would be the
Binomial(N, p) distribution whenNp ⌧ 1. In this case, we can often
wind up in a scenario where no actual realization of x will be close
to the mean value hxi. Thus, the average of x is a poor summary of the
typical behavior — we would be much better o� guessing that x ⇡ x0,
while being prepared for the small possibility that x ⇡ x1.

This distinction between “fuzzy” and “jagged” noise becomes important if we
want to perform an action based on the value of x. For example, we might want
to apply a nonlinear function, F (x), which could represent the number of de-
scendants that xmutations leave in a population at some later time.

• In Case � (“fuzzy noise”), we can often get a lot of mileage out of the
approach of treating the noise as a small perturbation, and applying some
of the approximation methods described above. Taylor expanding F (x)
around x0 = hxi, we �nd that

F (x) ⇡ F (x0) + F
0(x0)(x� x0) ⇡ F (hxi) ± F

0(hxi)� , (�.��)
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where we have substituted x = hxi ± �. You might recognize this as
the error propagation formula taught in introductory physics or en-
gineering labs. The interpretation here is similar: the “typical behavior”
ofF (x) is well-approximated by the deterministic portion,F (hxi), with
the noise introducing a small amount of spread around this value. Using
the approaches described in Section �.�, can now see that this error prop-
agation formula will be a good approximation provided that

� ⌧
F (hxi)

F 0(hxi)
. (�.��)

(Note that depending on the shape ofF (x), this could be looser or more
stringent than the requirement that � ⌧ hxi.)

• InCase � (“jagged noise”), we’ll need to explicitly consider the bifurcat-
ing outcomes,

F (x) ⇡

(
F (x0) w/ prob 1� p,
F (x1) w/ prob p.

(�.��)

In this case, the typical behavior is often well approximated by the deter-
ministic value y ⇡ F (x0), while the rare exceptions where y ⇡ F (x1)
must be treated separately.

Much of the randomnesswe’re used to encountering is of theCase � variety (e.g.,
measurement error in an introductory physics lab, or the mass of a given fruit
�y). However, when modeling evolutionary dynamics, we will often encounter
phenomena that look more like Case �, and this general strategy of breaking
things up into “typical” and “exceptional” outcomeswill be useful. (You’ll have a
chance to work through a concrete example of this in the Luria-Delbrück prob-
lem in Homework �.)

Moreover, just like we saw with the quadratic equation example in Eq. (�.�),
if we consider all possible combinations of N and p in a Binomial(N, p) dis-
tribution, the cases where Np ⌧ 1 and Np � 1 will cover most of the vast
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majority of the parameter space. This suggests that this crude dichotomy may
often be useful in practice— and that the exceptions whereN and p are speci�-
cally tuned to haveNp ⇠ O(1)might signal some that there is some interesting
feedback mechanism at play. For these reasons, you may �nd it useful to keep
these two pictures in the back of your head as we deal with random phenomena
throughout the course. I’ll try to emphasize speci�c examples as we go along.
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