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ABSTRACT

Advances in DNA sequencing are creating new opportunities for studying the process of evolution.
These measurements can be particularly useful for rapidly evolving microbial organisms, whose small size
and fast generation times make them ideal for controlled laboratory experiments and for tracking replicate
populations in vivo. However, the interpretation of this new source of data is complicated by the unique
ways in which these large microbial populations evolve.

The basic problem is that natural selection is forced to do too many things at once. Unlike the classical
picture, where new mutations arise one-by-one, rapidly evolving populations often harbor many selected
variants at the same time. When recombination is limited, selection cannot act on these mutations individ-
ually, but only on combinations of mutations that happen to arise on the same genetic background. These
effects, known as clonal interference, create correlations along the genome that are difficult to disentangle.
Existing population genetic models often neglect these effects, which leaves us at loss when interpreting
data from these populations.

In Chapters 2-5, we analyze the effects of clonal interference in a simple “null model” of microbial evolu-
tion. We focus on the simplest model that is consistent with two empirical observations: (1) many fitness-
influencing mutations are created every generation and (2) mutations have a broad range of fitness effects.
After analyzing the basic dynamics of this model, we obtain predictions for the substitution rates of indi-
vidual mutations and the patterns of linked neutral diversity, and we show how these quantities depend
on the population size, mutation and recombination rates, and the fitness effects of new mutations.

In Chapters 6 and 7, we apply this null model to data from laboratory experiments in S. cerevisiae and
E. coli. We develop a statistical framework to infer the underlying parameters (the fitness effects of new
mutations), which allows us to quantify deviations from the model over longer evolutionary timescales.

Finally, in Chapters 8 and 9, we investigate the behavior of the model when some of the parameters are
allowed to evolve or change in time.
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Introduction

Evolution is a fundamental organizing principle in biology. It allows us to reconcile the diversity of the
living world with the exquisite level of design and purpose that many organisms seem to possess. And
it explains how such improbable levels of design could emerge from an otherwise random struggle for
existence. Physicists have long been intrigued by evolution, perhaps because they see in it a semblance of
their own great organizing principle, the theory of statistical mechanics. The two theories do share some
common features. Both are products of the mid-19th century; both are concerned with populations (either
of molecules or organisms); and both attempt to explain the collective behavior of these populations by
appealing to a simple variational principle, like the minimization of free energy or the maximization of
fitness. Both theories have been extremely successful in this endeavor, providing a conceptual framework
and vocabulary for reasoning about the world around us. However, the modern versions of these theories
can also seem quite different. In particular, while statistical mechanics eventually developed an applied,
predictive component, our ability to predict the course of evolution still remains limited.

This does not mean that evolutionary biologists have been idle during this time. On the contrary, biol-
ogy has undergone a revolution of its own in the 20th century, and has made great strides in understanding
the molecular machinery that controls each living organism [160]. We now know the precise mechanisms
governing the storage and transmission of genetic information, and sequencing and gene-editing tech-
niques make it possible to read and rewrite this information at will [2]. Thanks in part to these advances,
and to the work of many naturalists and geneticists, we have a much better picture of what can happen

during evolution, and in many specific cases, what did happen. Nevertheless, it is still difficult to translate



this knowledge into quantitative predictions about the future. Even in the simplest microevolutionary
settings, we usually have much less of an idea of what will happen, how long it will take, or what else could
have happened if we “replayed the tape” from the beginning. To answer these questions, it is necessary
to understand evolution not just as an organizing principle, but as a dynamical process that specifies how
populations change with time.

These sentiments are, of course, not new. The search for a predictive theory of evolution is almost as
old as the theory itself. So before we commit the cardinal sin of a physicist [241], it is useful to pause and
ask: what has made this task so difficult in the past? and what has changed that might give us hope for the
future?

For many years, our limited predictive ability could be traced to a shortage of empirical data. Most evo-
lutionary changes are too subtle, or occur much too slowly, to be observed on human-relevant timescales.
Instead, we have had to rely on morphological observations from the fossil record, or the inferred rela-
tionships between present-day species. This situation has started to improve in recent years, as advances
in sequencing technology have enabled precision measurements of the evolutionary process that would
have been unimaginable just a few decades ago. Instead of relying on morphological features, which may
be poorly preserved in the fossil record or difficult to compare across species, it is now possible to directly
observe the genes and mutations that evolution acts on. Low-cost sequencing is a particularly powerful
tool for microbial organisms like viruses, bacteria, and populations of somatic cells, whose small size and
rapid generation times make them ideal for controlled laboratory experiments [11], and tracking replicate
populations in vivo [260, 13, 213, 307, 364]. These populations may have little direct relevance for tradi-
tional evolutionary questions such as the origin of flight [209] or the evolution of the eye [196]. However,
they can be much more useful for learning about the evolutionary process itself, since they can provide the
raw material from which predictive, phenomenological theories can be constructed and tested.

Yet even with the rosiest experimental outlook, there are fundamental theoretical reasons why evolution
can be difficult to predict. One reason is that evolution is inherently random. Mutation and recombination
— the sources of genetic variation — are ultimately caused by nanoscale cellular machinery acting on a
single pair of DNA molecules. These processes are strongly influenced by thermal fluctuations, so the
timing and location of these events are essentially random. In addition, biologists have long supposed that
the reproductive success of an individual is also influenced by chance (whether of a molecular nature or
not), and thisleads to an additional source of noise known as genetic driff. Given thisinherentstochasticity,
itis impossible to predict when or whether any specific event will occur. Instead, we can only speak about
the relative probabilities of these events.

A second major difficulty is that evolution is inherently messy, i.e., it cannot be divorced from biology.

A genetic variant may start as a simple change in a DNA molecule, but its phenotypic effect is a product of



development and physiology, and its eventual reproductive success depends on the interactions between
the phenotype and the ecology of the organism. These are entire subfields of biology, which, even in the
best studied organisms, are only partially understood. A list of all the factors that coxld influence evolution
would quickly overwhelm an army of experimentalists. To make matters worse, many of these factors are
not fixed constants. Evolution can alter the values of these parameters, and even the makeup of the list
itself.

Yet despite these fundamental difficulties, there are still some reasons for optimism, provided that we
take a more nuanced view of what we are trying to predict. In many evolutionary scenarios, we are most
interested in predicting the order of magnitude of a quantity, rather than its precise value. E.g., will a
population of bacteria acquire resistance to a particular antibiotic in a matter of months, decades, or mil-
lenia? Fortunately, there are many examples where orders of magnitude can be predictable even when the
underlying events are highly random.

For example, consider the textbook example of randomness in physics: the decay of radioactive isotopes.
There are few physical constraints on the timescales of this process. Half-lives of different radioactive iso-
topes vary over ss orders of magnitude [5], and even when the half-life of an isotype is known, it is still
impossible to predict when a particular atom will decay. Nevertheless, a pair of Carbon-1r and Carbon-14
atoms are not completely indistinguishable from each other. Although we cannot predict whether the
Carbon-11 atom will decay in 10 minutes or 30 minutes, we are fairly confident that it will decay within
200 minutes, and even more certain that it will decay within 2000 minutes. Similarly, we are quite cer-
tain that the Carbon-14 atom will not decay in fewer than 10® minutes, so that it will essentially always
be the second of the two to decay. And perhaps most importantly, while we cannot calculate half-lives
from first principles, there is an established body of nuclear theory that relates these decay times to other
physical quantities (e.g., masses of products, density of states, etc.), which can be measured and used for
predictions [31].

Radioactive decay is one particularly well-studied example, but similar order-of-magnitude questions
abound in evolutionary biology. Some are grand in scope, e.g. why did multicellularity require ~ 109
years to evolve, rather than ~ 107 or ~ 102 Others are potentially more answerable, like the timescale
of antibiotic resistance above. But even some of the most basic evolutionary timescales, which arise in the
context of laboratory experiments, are still surprisingly difficult to predict.

For example, experiments show that a particular strain of yeast acquires ~ 10 mutations after ~ 1000
generations of evolution in rich media [199]. This sounds like a reasonable number. But why is ~ 10
mutations the correct scale rather than ~ 100 or some number < 1? Would we be more or less surprised
to learn that the same 10 mutations were shared across the population, rather than each cell having its own

set? How many more mutations would we expect if the evolution was carried out in a bioreactor, with a



million-fold increase in the number of cells? Or in an environment that fluctuates between high and low
temperatures? And most importantly, what biological parameters would we have to measure in order to
predict these outcomes ahead of time?

It seems unlikely that we could predict the emergence of antibiotic resistance (let alone multicellularity)
if we cannot also answer such basic questions in the laboratory. Borrowing hope from physics, we might
expect that these order-of-magnitude questions will depend on a few key biological parameters, which,
like the masses of the decay products above, can be measured directly if necessary. But at present, it is not
always clear which combinations of parameters are relevant for such questions, which makes it difficult to
know what to measure. This is as true for the timescales of laboratory evolution as it is for antibiotic resis-
tance in the wild. In both cases, determining the relevant “knobs” will require a careful mix of theoretical
exploration and experimental calibration. This is one of the main goals of the present work.

Most importantly, we will not try to predict evolution from first principles, or even from higher-level
cellular processes like metabolism and gene regulation. Instead, we will take a phenomenological approach
and assume a perfect knowledge of biology, such that the range of possible outcomes, their mutation rates,
and their phenotypic consequences, are specified a priori. Our goal then is to predict how evolution acts on
this spectrum of possibilities to produce the outcomes that we measure experimentally, particularly those
outcomes that can be measured in sampled DNA sequences.

By abstracting away the biology, what remains is primarily a question about dynamics — the “bean-bag
genetics” that describe how a mutation comes to dominate a population. Theoretical techniques from
physics will naturally be useful for attacking such questions. Perhaps surprisingly, one of the main findings
of this and other work is that these dynamical considerations can be just as important as the biology for
determining the fates of mutations, particularly in the rapidly evolving microbial populations that are
our focus here. Ideally, a better understanding of the dynamics would allow us to turn our predictions
around, so that we could utilize patterns of DNA sequence evolution to make inferences about biological
parameters that might be difficult to observe directly.

We are not the first to try to model the dynamics of mutations within a population. Similar questions
have been studied for more than 100 years in the field of population genetics. One of the early triumphs
of this field was the modern evolutionary synthesis, which showed how the sweeping macroevolutionary
changes of Darwin’s theory could be reconciled with microevolutionary selection and Mendelian genetics
[286]. These contributions still form the basis of our modern conception of evolution today. Although
population genetics eventually came to be viewed as somewhat of a mathematical curiosity among biolo-
gists [226], it has recently witnessed a resurgence in popularity, as genetic data have become more readily
available [8s]. In this way, the original theoretical models of Fisher, Wright, Haldane, and others have

now become the primary means for interpreting empirical patterns of DNA sequence variation in natural



populations.

For historical reasons, these early population genetic models mostly focused on genomes with no more
than a single selected site, with the assumption that an actual genome can be regarded as an independent
collection of such sites [305]. These models have provided important intuition about the interactions
between mutation, selection, recombination, and genetic drift. But recent work has shown that they may
be less well-suited to describing modern DNA sequence measurements [123, 61, 236], particularly in the
rapidly evolving microbial populations that are our focus here. In the remainder of this chapter, we will
briefly review these single-site models and their connection to DNA sequence data. We will not attempt to
give an exhaustive review; several textbooks are already available [133, 339, 84], and the remaining chapters
of the thesis will review the relevantliterature as necessary. Our intent here is to provide a more pedagogical
introduction aimed at physicists and quantitative biologists who are new to the discipline, but who are
already familiar with the basic mathematical machinery. After reviewing these ideas, we will briefly describe
how this thesis builds on existing population genetic theory to gain a better understanding of evolution in

rapidly evolving populations.

1.1 SINGLE-SITE MODELS: TRACKING THE FATE OF A MUTATION

One of the greatest difficulties in studying evolutionary dynamics is deciding on an appropriate mathemat-
ical model. On the one hand, we know that the underlying biology is complex. The reproductive success
of an individual depends on a multitude of physiological and ecological details, which are at best only par-
tially understood. On the other hand, experience from physics suggests that some #niversality might arise
in systems with many individuals, such that the long-time, population-level behavior is controlled by only
a few key features of the biology. This is an appealing premise, but it is difficult to prove in practice, and
it provides little insight into which biological details will be the relevant ones. This suggests that it will be
difficult to guess an appropriate model by working backwards from populations in nature.

At the opposite extreme, the field of population genetics has historically focused on specific toy models
of evolution inspired by the ball-and-urn models of classical probability theory. Notable examples include
the Galton-Watson process, the Wright-Fisher model, or the Moran model [84]. Although these were orig-
inally favored more for their mathematical rigor than their realism, the subsequent arrival of genetic data
has lead to the widespread application of these models in many practical contexts as well. Here population
geneticists appeal to their own sense of universality, in which the complexities of the actual evolutionary
process can be absorbed into a few effective parameters that govern these toy models.

For our purposes, we will attempt to find a compromise between these two extremes, focusing on a par-

ticular toy model designed to mimic experimental evolution of microbes in the laboratory. The motivation



for this choice is partly practical: microbial evolution experiments will serve as the primary application of
the theoretical ideas developed in this thesis, and it will be useful to have a model of these experiments in
mind to facilitate such a comparison. However, this choice will also allow us to show how certain “univer-
sal” population genetic limits arise in a concrete example, which can be implemented with free-living cells.
This will provide some explanation for the success of the traditional ball-and-urn models above, despite

their abstract nature.

MICROSCOPIC DYNAMICS

Our model attempts to approximate a batch culture experiment, in which a population of bacteria is grown
in a well-mixed flask” of rich laboratory media [11]. The ancestral (or wild-type) strain is assumed to grow

exponentially at rate 7, such that the number of cells in the flask at some time At later is given by
Nye(t + At) = nge(t)e™ (1)

Note that if we measure time in generations (i.e., doublings), then 7 = In 2.

Eventually, the bacteria will exhaust the finite supply of nutrients in the flask, and the growth of the
population will saturate. Before this happens, however, we assume that the experimenter transfers a small
volume of cells into a fresh flask. This volume is chosen such that on average Ny cells are deposited into
the new flask, although the actual number will follow a Poisson distribution around this mean value. By
monitoring the density of cells, the experimenter can choose the volume to ensure that an average of N,
cells are still transferred to the next flask regardless of the fluctuations in the initial number of cells. The
bacterial population dynamics will then resemble a succession of boom and bust cycles (Fig. r.1), with a
post-bottleneck size of N}, ~ N, + \/ﬁb

We can introduce evolution into this model by imagining a competition between two genetically dis-
tinct strains. Suppose we have a mutant strain of bacteria with a slightly different growth rate, 7 + s, which

will grow to size
N (4 AL) = e (£) TR (1.2)

over the course of the cycle. Since the mutant and wildtype cells are equally likely to be transferred into

" A similar approach can be carried out for evolution in a chemostat [263]. We leave this as an excercise for the
reader.
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Figure 1.1: Population growth dynamics in a simplified batch culture model. In this example, At = 10 genenerations and
Ny = 10% cells.

the next flask, the fraction of mutant cells immediately after the transfer is simply

! F()e

- Binomial | Ny(t 4+ At), FBed+1—F@)| (1.3)

t+At) = ————
Je+80 = N+ an
where the population size Ny (t) is still a Poisson random variable with mean N. Equation (1.3) provides
a concrete rule for updating the frequency of the mutant strain after successive transfers. In this model,
the cells are essentially competing for the chance to make it into the next flask. Those cells that grow faster

have a natural advantage in this respect, with a magnitude determined by the product sAt.

THE CONTINUUM LIMIT

We could analyze Eq. (1.3) directly, but additional simplifications arise in the limit that NV}, is large and sA¢
is small. In this case, the change in f(t) over any single transfer cycle is small, and we can coarse-grain over

a large number of cycles to arrive at the continuum limit,

or
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where N = Ny, - At and 7)(t) is a standard Brownian noise term. This stochastic differential equation

should be interpreted in the It6 sense [99], which means that, in some infinitesimal time 0,

otf(t)(1 = f(t))
N

f(t+0t) = f(t) +sotf(t)(1— f(t)) + \/ - Normal(0,1). (rs)

The parameter s is known as the selection coefficient or the fitness effect, and N is the effective population
size. In the population genetics literature, it is more common to write the Langevin dynamics in Eq. (1.4)

in the form of a Fokker-Planck equation for the probability density, ¢( f, ¢):

2

2 o [T - st - ool (.6)
In this form, we see that our model is equivalent to the diffusion limit of population genetics [90, 84], in
which the frequency of the mutant strain is modeled as a form of biased random walk. In retrospect, this
equivalence is not that surprising: Eq. (1.4) is known to be the continuum limit of a large class of models
[69], including the traditional Wright-Fisher model, the Moran model, and continuous-time branching
processes, which differ only in their definition of the effective population size N. This provides a concrete
example of the universality principle discussed above.

Note that in passing to the continuum limit, we have also lost the dependence of one of the param-
eters of the model. Examination of Eq. (1.6) shows that the quantities IV, s, and ¢ do not influence the
model independently, but only through the scaled combinations N's and ¢/N (or alternatively, N's and
st). This induces an effective “unit system” into the model, in which ¢, N, and 1/ all have effective units
of time. Like any other unit system, this implies that observable quantities can only depend on unitless
combinations of these parameters, which will provide a useful check for many of our calculations.

At first glance, Eq. (1.4) appears to resemble the diffusion processes that arise in the physical sciences,

like the Brownian motion of a particle subject to a potential V'(z):

The key difference in Eq. (1.4) is that the effective diffusion constant (i.e., the step-size of the random walk)
is itself a function of the mutant frequency, and it grows increasingly small when either the mutant or the
wildtype become rare. In the extreme case where f = 0 or f = 1, the effective step size vanishes and
the mutant frequency becomes frozen for all time. Of course, this is exactly the behavior we expect in an
evolutionary setting: at long times the mutation must eventually either take over the population (f = 1)

or go extinct (f = 0), after which no further evolution can occur. Note however, that although the



diffusive force grows weaker in an absolute sense, the relative size of the fluctuations become increasingly
large compared to f when f — 0, 1. Thus, even in an infinitely large population, number fluctuations
play an important role whenever the mutant or the wildtype becomes rare. As we will see below, these two
features lead to dramatically different dynamics than one would expect based on the analogy to Brownian
motion alone.

Although the evolutionary model in Eq. (1.4) is simple to write down, it has no exact closed-form solu-
tion. The partial differential equation in Eq. (1.6) is linear in ¢( f, t), so it does admit a formal solution in

terms of an eigenfunction expansion,

dla,t) =Y dp(x)e™ M, (r8)
k=1

subject to the correct boundary conditions (see [175, 323] for more details). However, in practice, this
formal solution is somewhat opaque, and it provides limited insight into the evolutionary questions we
might wish to answer. Fortunately, it is often possible to bypass Eq. (1.8) and obtain predictions for many

other quantities more directly.

1.2 GENETIC DIVERGENCE: WHICH MUTATIONS WILL FIX?

One of the most basic quantities we can consider is the probability that the mutant strain will eventually
take over the population rather than going extinct. This is known as the fixation probability, pgy, and it
depends on the dimensionless parameter /V's and the current frequency f. Predictions for pgy are easiest
to obtain from the moment generating function, H(z,t) = (e~*/), whose equation of motion can be

obtained by expanding H (z, t + dt) and applying Eq. (1.5), or by taking the Laplace transform of Eq. (1.6):

OH (= 1) _ {S 22} [8H(z,t) _ OPH(z,1) (L9)

ot “TON 2 922

This partial differential equation is no easier to solve than Eq. (1.6), but it has the advantage that H(z, t)
will remain smooth even when the probability density ¢(f,t) contains d-functions. By definition, the
mutant strain starts at frequency £, so the generating function is initially given by H(z,0) = e~*/. At

long times, the mutation will either take over the population or go extinct, so that

lim H(z,t) =1-(1—psx) +€ - prix - (1.10)
t—00
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Figure 1.2: A toy model of spontaneous mutation. The mutant phenotype is controlled by the value of a particular site in
the genome which mutates at rate f. Neglecting the remaining sites, we can approximate the population as a collection of
single-site genomes, each of which can be in the mutant or wildtype state.

In order to predict pgy, we need to find a way to connect this equilibrium function with its initial condition
att = 0. Ordinarily this would be a hard problem, requiring the full time-dependent solution of Eq. (1.9).
However, in this case we can appeal to a simple trick [142]. At the special value of 2 = 2N's, the time
derivative of H (z,t) vanishes, which allows us to connect the initial and final values of H(z,t) at this

special point:

H(2Ns,0) = tli)m H(2Ns,t). (r.m)
Solving for pay, we find that
1— 6_2N$f
px(s, f) = 1 _o—2Ns ° (L12)

This expression has all of the intuitive properties we would expect for a fixation probability: it vanishes
when f = 0, approaches unity when f = 1, and increases monotonically with /Vs. If there is no fitness
difference between the strains, then pgy = f, as expected from symmetry considerations.

Equation (1.12) predicts the outcome of a mutant/wildtype competition when the mutant is introduced
at a given frequency. Although this is potentially useful in an experimental setting (see Chapter 6), in an
actual population these mutants must be produced by spontaneous mutations in the wildtype strain. To
model this case, we can imagine that the 7 4 s phenotype is controlled by the value of a single nucleotide in
a particular site in the genome, and that mutations from the wildtype to the mutant state occur at rate 1 per
cell per unit time. In the absence of other mutations, we can ignore the remaining sites in the genome and

model the population as a collection of single-site genomes, which can either be in the mutant or wildtype

I0



state (Fig. 1.2). It is a straightforward exercise to show this changes our continuum model to

o =sfa - u -+

fA =)

(). (123

In many cases of interest, the per-site mutation rates are small compared to the other relevant timescales of
system, which means that we can neglect the —u f term in Eq. (1.13) and model the fate of each mutation
independently. In other words, we assume that new mutations arise as a Poisson process with Ny, and
that the subsequent dynamics of these mutations is described by Eq. (1.4). Each of these mutations starts

at frequency f = 1/N, and fixes with probability

2s
pﬁx(s,l/N) = m, (I.I4)
so that successful mutants are produced at rate
2N su
A = Nupsx(s,1/N) = PR (r15)

Equation (1.15) is a key result in population genetics, since it allows us to predict the genetic changes that
will accumulate in a population over time. These changes, known as generic divergence, can be measured
by comparing a DNA sequence sampled from the population with the DNA of the ancestor or a suitable
outgroup (Fig. 1.3). For the single-site model in Eq. (1.4), all of the information about genetic divergence
is encoded in the quantity d, which is the probability of observing a mutation at the site in question. In
practice, it is difficult to measure a per-site d ;y based on data from a single population, since a given site will
either contain a fixed mutation or not. Instead, divergence is typically estimated for a class of putatively
similar sites across the genome by calculating the fraction of sites that have mutated (see Fig. 1.3). For
example, the average divergence between the human and chimpanzee genomes is of order dy ~ 1% [313],
while the divergence between human and mouse is much larger (dny ~ 50% [s3]).

To relate d v to the model in Eq. (1.4), we note that a randomly sampled individual will contain the mu-
tation with probability f(t), where the value of f () will vary from population to population. Averaging

over the ensemble, this implies that

dy = (f(1))- (1.16)

We cannot evaluate Eq. (1.16) exactly, but we can approximate it in the limit of long times and low mutation

rates. In this limit, most populations in the ensemble will either have fixed the mutation or are still waiting
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Figure 1.3: Genetic divergence between ancestral and evolved DNA sequences. In this example, the average divergence is
dy ~ 2 / 22.

for it to arise, so that

= m . (1.17)

In practice, we often do not know the divergence time (or the mutation rate) when comparing DNA se-
quences from natural populations. It is common to remove the dependence on ¢ by normalizing the ob-
served divergence by the average value at a class of putatively neutral sites (e.g., those leading to synonymous

codon changes), for which dg = pt. This yields a second quantity

dy  2Ns
dg 1—e2Ns’

(1.18)

which no longer depends on p or ¢. This quantity then serves as a measure of natural selection: values
of dy/ds > 1 indicate adaptation or positive selection (i.c., selection acts to change the wildtype se-
quence), while dy/dg < 1 indicates negative or purifying selection (i.c., selection acts to preserve the
wildtype sequence). For example, when comparing the human and mouse genomes, protein coding sites
have dy/dg ~ 0.1, indicating predominantly negative selection [53]. Values of dyy/dg for the human-

chimpanzee and mouse-rat comparisons are similar, even though the timescales involved are much shorter

[313].

1.3 ASYMPTOTICS AND HEURISTIC ANALYSIS

Equation (1.12) is “exact” in the sense that it can be derived Eq. (1.4) without! approximation, and is valid

for arbitrary values of IV s. Closed-form expressions like Eq. (1.12) are highly prized in population genetics,

"We must be careful to remember that “exactness” is relative, as Eq. (1.4) is merely an approximation to the discrete
model in Eq. (1.3), which is itself just a toy model of competition between two strains in the laboratory.
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since they can easily be inverted into inference methods for estimating parameters (in this case N's) from
data. However, the quest for exact results can also have its drawbacks. The analysis above provides little
insight into why the fixation probability is given by Eq. (1.12), and the derivation breaks down under slight
generalizations of the model, e.g. if we allow IV or s to vary in time.

Fortunately, this level of exactness is often unnecessary. The reason is that our evolutionary models are
typically parameterized by numbers that are either very large (like the population size) or very small (like
mutation rates or selection coeflicients). We have already taken advantage of this fact in passing to the
continuum limit in Eq. (1.4). A second consequence of this fact is that, given a random combination of
large IV and small s, the magnitude of their product is itself very likely to either be very large or very small.
Intermediate values of N'|s| ~ O(1) would typically be unlikely unless there is some additional constraint
to enforce this fine-tuning. In the absence of such constraints, we should be able to get a nearly complete
solution to the problem by analyzing Eq. (1.4) in the asymptotic limits where N|s| < 1and N|s| > 1.

Although it might seem like we have only made the problem more complicated (or less accurate) by
focusing on these limits, we will see that they encapsulate the essential features of the dynamics in a way that
is robust to slight perturbations of the model. In the following sections, we present a heuristict analysis of
Eq. (1.4) in these two limits. Our presentation will be similar in spirit to [70, 91, 106], although the analysis
will be slightly different. This heuristic approach will provide a more mechanistic picture of the dynamics
in Eq. (1.4), and it will enable us to rederive pgx (s, f) (and many other quantities) in a more transparent
way. Most importantly, the intuition gleaned from this excercise will become useful later in the thesis,

when we attempt to extend the model to more complicated scenarios.

DYNAMICS OF A NEUTRAL MUTATION

In the limit that Vs — 0, the selection term in Eq. (1.4) can be neglected, and

of fa-f
E - (]V)T](t) . (I.I9>
Since genetic drift is unbiased, 0;(f(t)) = 0, and the average frequency of the mutation is equal to

(f(t)) = f forallt. Atlong times, the mutation must either fix or go extinct, so that

lim (f(t)) =1-pax +0- (1 — pax) - (1.20)

t—o00

iAlthough these calculations are presented as heuristics, they can all be made more rigorous using standard tech-
niques from asymptotic analysis [141]. We leave this as an excercise to the reader; a “problem set” describing these
calculations is available at https://github.com/benjaminhgood/popgen_notes.
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These two relations can be combined to show that psy = f, in agreement with the s — 0 limit of
Eq. (1.2). However, this argument also shows how (f(t)) can be a misleading summary of f(t), since it
is very far from the typical value of f(t) at sufficiently long times. So what does the trajectory of an actual
mutation look like? And approximately how much time is required for the mutation to transition to its
final state?

To investigate these questions, let us consider 2 mutation that starts at a small initial frequency f(t) <
1. In an infinitesimal time 0%, the definition of the model implies that f(t) wanders diffusively:

f@)ot

S0f = f(t+ot) — f(t) = " Normal(0, 1) (r.21)

But how does this extend to finite intervals, At, where the finite changes in f(t) can alter the effective
diffusion constant in Eq. (1.19)?

We can analyze this case heuristically by employing a crude form of integration. First, we note that
Eq. (r.21) should continue to be a good approximation as long as A f < f, since f(t) will be effectively
constant throughout the time interval. On these timescales, the average (f(t)) is still 2 good approxima-
tion to the typical value of f(t). However, this will eventually break down for times of order At ~ N f,
when A f ~ £ f. With probability %, the perturbation will be in the negative direction, and the mutation
will likely die out. Otherwise, the perturbation will be positive and the process will start over at an initial
frequency of 2 f. Repeating this line of reasoning, we find that after an additional 2V f generations, the
mutation will again be nearly extinct or else have grown to frequency 4 f, and so on. Iterating this process
d times, we see that the population will reach size f(t + At) = f(t)2¢ with probability () ¢ and it will
take a time of order At ~ Z;(l) N f(t)2¥ to do so. We can summarize this behavior in two equivalent

ways depending on whether the time interval At or the frequency change A f is the independent variable:

1. With probability N f /(N f + At) the mutant will survive for At generations and grow to size
f+ At/N.

2. With probability f/(f + Af), the mutant will reach size f + A f, and it will take At = NAf

generations to do so.

Note how the displacement scales as a linear function of At, rather than the characteristic v At depen-
dence observed on short timescales.
In order to fix, the mutant must drift to frequencies of order O(1). The analysis above shows that this

will happen with probability

Pbfix ~ fv (1'2‘2‘>
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and that it will require a time of order
Tix ~ N (1.23)

to do so. Conditioned on eventual success, the linear relationship between A f and 6t implies that a typical
mutant trajectory will spend equal amounts of time at each frequency between f and 100% before it
fixes. Most of this time is spent traversing intermediate frequencies (e.g., 80% of the fixation time is spent
between f = 10% and f = 90%).

These timescales also provide a way to check the validity of the neutral approximation when N|s| is
small but finite. When the selection term is added back to Eq. (1.19), it contributes a change of order
Afsel ~ N|s| over the O(N) generations that the mutation can drift before it fixes. Since the actual

change in f(t) is O(1), we see that selection will be a negligible correction whenever N|s| < 1.

DYNAMICS OF A SELECTED MUTATION

In the opposite limit, where N's — 0o, we expect that selection will be the dominant evolutionary force.

If we neglect genetic drift entirely, Eq. (1.4) reduces to the deterministic dynamics

of
E—Sf(l—f). (1.24)
The solution is ordinary logistic growth,
B f(t)esAt
flt+ At) = 1= f(t) £ FB)edt (1.25)

which will drive beneficial mutations to f(#) — 1 and deleterious mutations to f(¢) — 0. However, we
can immediately see that something wrong this with approximation: it predicts that the fixation proba-
bility of a beneficial mutant is pgx (s, f) ~ 1, and that it takes the mutation Thyx = % log (%) = 00
generations to fix!

The problem is that genetic drift is not entirely negligible in Eq. (1.4), even in the limit that Ns — oo.
To see this, let us again focus on a mutation that starts at an initial frequency f < 1. In an infinitesimal

time dt, selection and drift change the frequency of the mutation by an amount

Of ~ sf(t)ot+ MNormal(O, 1), (1.26)
—— N
selection

genetic drift
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Figure 1.4: A schematic illustration of the three distinct frequency regimes in Eq. (1.4) in the limit that Vs > 1. Genetic
driftis only negligible in the middle region.

As we argued before, this will continue to be a good approximation for finite At provided that A f < f,

but it will eventually break down when A f ~ f, or
fAt

f~ls|fAt+ N (127)

genetic drift

selection

When Nls|f > 1, we can see that the selection term is indeed the dominant contribution over this
time interval, as we anticipated in Eq. (1.24). But for N|s|f < 1, genetic drift is actually the dominant
evolutionary force. This suggests that the proper approximation to Eq. (1.4) for large N's is the piecewise

model,

JEn® i f SUNIs),
~{sf(L—f) iff(1—f)>1/N]s|, (1.28)
%n ifl — f < 1/N]|s|,

ot

which is illustrated in Fig. 1.4. A mutation that is introduced at an “observable” frequency [f(1 — f) <

1/N|s|] will behave nearly deterministically, so that we can estimate s by monitoring its frequency over a
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pair of timepoints:

(129)

1 10g<1—f(t) F(t+ Ab) >

T A ) 1-ft+AD

This is the standard method used to estimate fitness in laboratory evolution experiments. However, a
spontaneous mutation will always start at an initial frequency 1/N < 1/N]|s]|, so we cannot predict its
probability of fixation without accounting for the interplay between selection and genetic drift.

When a mutation starts at a frequency f < 1/N|s|, it will initially evolve according to the neutral
dynamics discussed above: with probability N|s| f, it will drift to size 1/N|s|, and it will require a time
of order At ~ 1/s to do so. At this point, natural selection takes over. A beneficial mutation will start
to grow logistically, and it will reach size 1 — 1/N's after At ~ 1log(N's) generations. A deleterious
mutation will be pinned near 1 /N |s|, and will typically drift to extinction within At ~ 1/|s| generations.
Similarly, a beneficial mutation near f(t) ~ 1 — 1/N s will typically drift to fixation within the next 1/s
generations, while a deleterious mutation near f(¢) ~ 1 —1/N|s| will fix with probability N|s|(1 — f).

Combining these facts, we conclude that beneficial mutations will fix with probability

1 iff>1/Ns,
Pax (s, f) ~ (130)
Ns if f <1/Ns,

while deleterious mutations will fix with probability

0 ifl — f 2> 1/N]|s|,
Phix(8, f) ~ (1.31)
Ns(1—f) ifl—f<1/Nls|.

One can check that these expressions agree with the exact formula in Eq. (1.12) in the appropriate limits.

For the special case of a spotaneous mutation (f = 1/N), we recover the simple formula,

s ifs >0,
Pax(s,1/N) ~ (1.32)
0 ifs<O.

which matches the large N's limit of Eq. (1.14). A mutation that is twice as beneficial will fix twice as often,

while a deleterious mutation will essentially never fix. Conditioned on fixation, a new beneficial mutation
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will require

1 2 1 1
The ~ < + = log(N's) + = ~ = log(Ns) (133)
S S S S

generations to fix. This timescale is dominated by the time that it takes the mutation to travel from one
drift-dominated regime (~ 1/N's) to the other (~ 1 — 1/N's), which is somewhat similar to the neutral
case above. However, unlike neutral mutations, which spend equal amounts of time at these intermediate
frequencies, these strongly beneficial mutations spend much of their time traversing “unobservable” fre-
quencies where 1/Ns < f(1 — f) < 1. E.g., only a fraction log(9)/ log(N's) of the fixation time is
spent between f = 10% and f = 90%.

Our heuristic analysis also provides a natural way to identify the limits of the quasi-deterministic ap-
proximation in Eq. (1.28). When 1/N|s| = 1 — /N|s| ~ 1/2, the drift-dominated region of Eq. (1.28)
will cover the entire range of frequencies, and the mutation will behave as if it were effectivley neutral. This
transition to nearly neutral behavior for |s| < 1/N is known as the driff barrier, since selection is unable
to efficiently act on mutations that are weaker than this threshold [267]. This is one example where dy-
namical considerations (e.g., the strength of genetic drift) can place fundamental limitations on how well

evolution can optimize certain aspects of biology [219].

1.4 GENETIC DIVERSITY: MAKING INFERENCES ABOUT THE PAST

So far, we have focused on genetic changes that accumulate over long timescales, when most successtul mu-
tations have fixed in the population. The advantage of focusing on these fixed differences is that they can
be measured by sequencing a single individual from the population. But as the costs of sequencing have
fallen, it is increasingly common to sequence DNA from multiple individuals in the population (an exper-
imental design known as resequencing). The genetic differences between these contemporary sequences
can then provide information about the genetic diversity within the population as well (Fig. 1.5). A major
focus of modern population genetics is to use these within-population differences, also known as polymor-
phic mutations, to make inferences about the recent evolutionary history of various natural populations
(e.g. humans) [285].

For the single-site model in Eq. (1.13), all information about genetic diversity is contained in the poly-

morphic site frequency spectrum (SES),

Pa(i) = < <”) ria- f)"—i> , (134)

which represents the probability of observing a mutation in ¢ individuals in a sample of size n. When
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- AAAGTTACTGAGGGTTTCCCAT - Ancestral sequence

i © generations

|

-+ AAAGATACTGAGAGTTTCCCAT - Individual |
- AAAGATAGTGAGAGTTTCCCTT -+ Individual 2
- AAAGATAGTGAGAGTTTACCTT -+ Individual 3
- AAAGATACTGAGAGTTTCCCTT -+ Individual 4

Figure 1.5: Genetic diversity in a sample of contemporary DNA sequences. Fixed mutations are shown in blue and polymor-
phic mutations are shown in red.

i = m, this statistic corresponds to the fixed-differences studied in the previous section; polymorphic
mutations require that 1 < ¢ < n — 1, so we will focus on this case from now on. The simplest version
of the SFS, P (1), is canonically designated by the variable 7 and is known as the pairwise heterozygosiz‘y§.
In humans, the pairwise heterozygosity is of order 7 ~ 0.1%, and values in other organisms range from
m~ 0.01% tom ~ 10% [202].

If we know the SFS for a sample of size n, it is easy to show that we can recover the SFS for a smaller

sample using the “downsampling” formula,
n—n/+i’ (1 n—i
Pu(i)= Y Mmi), (13s)

which, in the case of n’ = 2and i = 1, yields an empirical formula for the pairwise heterozygosity,

M e [ i
= Z (n) <1 - n> P,(i). (1.36)

This shows that, at least from a theoretical perspective, all information about genetic diversity is contained

in the large-n limit of the SFS,

p(f) = lim Fy(nf), (137)

$This name stems from the fact that, in diploid organisms, 7 is also the probability that two chromosomes from
the same individual will differ at a particular site.
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which is related to the finite-sample SFS through the integral relation,

= [ () ra- s, (59

In the previous section, we calculated moments like ( f) by assuming that at long times, most of the con-
tribution to the mean was due to fixed mutations. This assumption no longer applies for the higher-order
moments in the definition of Eq. (1.34), since they always include at least one factor of (1 — f) which
zeros out any contribution from fixed mutations. In principle, this means that it is much more difficult
to calculate diversity statistics like p(f) than it is to calculate divergence statistics like pgy, since the former
will depend on the entire trajectory of the mutation in addition to its ultimate fate.

Fortunately, we can again appeal to a trick that yields a closed-form solution for p( f) with minimal
effort. We note that the shape of p( f) is unchanged if we replace Eq. (1.13) with an altered model, in which
the mutation is immediately restarted at some infinitesimal frequency € whenever it fixes or goes extinct
[83]. This modification will only change the overall scale of p( f) by some constant factor. For frequencies
larger than ¢, the altered p( f) will satisfy the same equation as ¢(x, t) in Eq. (1.6), except that by definition

the time derivative vanishes for p(f):

P L0 pn) 2

=37 I ~ o [sf(1— fp(f)] - (139)

It is a straightforward excercise to solve Eq. (1.39), subject to the condition that p(1) < 00, to obtain

1— 672Ns(17f)

p(f) Wa (1.40)

which fixes p( f) up to an overall constant.

We can gain some intuition about the functional form of Eq. (1.40) by appealing to our heuristic picture
above. We saw that successful beneficial mutations spend most of their lives growing logistically from
f~1/Nstol — f ~ 1/Ns. In this frequency range, p(f) ~ 1/ f(1 — f), which simply corresponds
to averaging the logistic growth function over the unknown birth-time of the mutation. We can estimate
the SFS for a neutral mutation in a similar way: with probability 1/¢, a mutation that arose ¢ generations
ago will survive to reach size f ~ t/N, which implies that p(f) o 1/ f. Finally, the SFS for a deleterious
mutation will be similar to the neutral case when f < 1/N|s|, but selection prevents the mutation from
rising much above this threshold.

To compare Eq. (1.40) with data, we must solve for the unknown normalization constant, which will

depend on N'sand N p. To do so, it is useful to first use the downsampling formula in Eq. (1.36) to rewrite
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the normalization in terms of the pairwise heterozygosity,

2N st (1 — 6_2N5(1_f))

p(f) = 2f(1— f)(2Ns — 1 + e 2Ns) (141
Then to determine 7, we note that we can take an average of Eq. (1.13) to show that
0
VD sipa- ) (42

ot
In the section on fixed mutations, we showed that 9;(f) = Npupsx(s,1/N). This leads to a simple
relation between 7 and pgix (s, 1/N),

w = 2 [Npauls, 1/N) - 1] (143)

Using the formula for pgy in Eq. (1.12), we find that

ANp if Ns> 1,
2u [2Ns — 1+ e 2Ns '
T=- N ~ S 2Npu if N|s| < 1, (1.44)
2 ifs < 0and Nls| > 1,

Is

Again, we can understand the asymptotic behavior of 7 by appealing to the heuristic calculations above.
Mutations arise at rate /Ny, and contribute to 7 ~ (f(1 — f)) before they fix or go extinct. A neutral
mutation will reach frequencies where f(1 — f) ~ O(1) with probability 1/N, and it will drift at these
frequencies for ~ N generations. The heterozygosity is therefore givenby m ~ Ny -1+ % -N ~ Np. In
comparison, a strongly beneficial mutation will reach f(1 — f) ~ O(1) with a much higher probability
(prx ~ ), but it will only spend 1/s generations passing through f(1 — f) ~ O(1), so that m ~
Np-1-s- % ~ N p. This means that beneficial and neutral mutations have similar contributions to
pairwise diversity, despite their vastly different rates of genetic divergence. On the other hand, a strongly
deleterious mutation can never reach frequencies where f(1 — f) ~ O(1) — the best it do is to reach
frequencies of order f ~ 1/N|s|, which happens with probability ~ |s|. The mutation drifts at these
frequencies for 1 /|s| generations, so thatm = N - ﬁ “|s|- ﬁ ~ pu/|s|. Asaresult, strongly deleterious

mutations will contribute little to diversity as well as divergence.
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1.5 NEUTRAL THEORY AND THE COALESCENT

The situation becomes particularly simple in the neutral limit, when most sites have |s| < 1/N. This
scenario was originally championed by Kimura [177], who saw it as a way to explain the surprisingly high
levels of intra-population variability in protein electrophoresis measurements [211, 130]. It was also moti-
vated by the (then) recent discovery of the degenerate genetic code [261], which suggested that many DNA
sequence changes could have no discernible effect on the phenotype. In the past half century, the neutral
theory has grown into the standard “null model” of population genetics, and a rich body of theoretical,
statistical, and computational techniques have been developed around this assumption [133].

In the neutral limit, genetic diversity is exclusively governed by drift, and the predictions for w and P, (7)

reduce to

T=2Np, (1.452)
1

Pri) oc - (1.45b)

These simple relations have been extremely influential in population genetics. Equation (1.45a) suggests
that we can infer the population size directly from genome-wide estimates of heterozygosity. In fact, the

neutral theory has become so widely ingrained in modern population genetics that the quantity
Ne=— (1-46>

is sometimes defined to be the “effective” population size [46]. E.g., in humans, the observation that 7 ~
1073 is often reported as N, ~ 104, while Drosophila melanogaster has N ~ 10 [46]. In this way, one
may even talk about variation in IV, along the genome [120]. This variation can sometimes reflect actual
differences in population size (e.g., there are only ~ 3/4 as many X chromosomes as there are autosomes
in the human population). However, the observed variation cannot always be explained in this way (e.g.,
the “IN,.” for the Y chromosome is ~ 30 times lower than the X chromosome [354]). In these cases, N,
can only be interpreted as an effective parameter that may not represent any physical population of genes.

Equation (1.45b) has been equally influential, since it predicts that the frequencies of genetic polymor-
phisms should be distributed according to the parameter-free distribution p(f) ~ 1/ f. This strong pre-
diction, which is readily testable with modern sequence data, has spawned an entire subfield of neutrality
tests (e.g., Tajima’s D [329]) which aim to reject the neutral null model in a rigorous statistical setting [259].

We derived Egs. (1.452) and (1.45b) above by averaging over mutation frequency trajectories. But they

can also be obtained using an entirely different picture known as the coalescent, which emphasizes the
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Figure 1.6: (A) Genealogy for asample of n = 2 individuals, which traces the line of descent back in time until the lineages
“coalesce" into their most recent common ancestor. Mutations that occur before coalescence (red circle) are polymorphic.
(B) Genealogy for a sample of n = 4 individuals. The red mutation is presentin? = 2 of the n individuals.

genealogical relationships among the sampled DNA sequences. A random pair of individuals will share a
common ancestor T\Mrca generations in the past (Fig. 1.6). Neutral mutations will neither influence nor
be influenced by the value of T\irca, and will occur with probability & per unit time along the branches
of the genealogy. In order for a mutation to be polymorphic in the sample, it must occur on one of the
ancestral branches before they have merged (or coalesced) into their most recent common ancestor (see

Fig. 1.6A). The pairwise heterozygosity is therefore given by

7 = 2u{T\MRCA) - (1.47)

In a neutral population, two individuals will share a common ancestor in the previous generation with
probability 1/N, so that (Tvrca) = N, and m = 2N 1 as expected. Predictions for the SFS follow from
similar considerations, except that now each of the (g) pairs of lineages can coalesce with probability 1/N.
When two lineages coalesce, they are replaced by their common ancestor, and the process continues until
all n lineages have coalesced into a single common ancestor (see Fig. 1.6B).

The advantage of this line of reasoning is that it can be immediately extended to cases where the popu-
lation size varies in time. In this case, pairs of individuals coalesce with probability 1 /N (t), where N (t) is
the size of the population going backwards in time. For a sample of size n = 2, the distribution of TMrcA

is given by

!
dt de’
Y

t
Pr[Tyirca <t =1—¢ b 3@ (1.48)
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so that
oo — _dt"
= 2;1/ e TONE) dt. (1.49)
0

Predictions for the site frequency spectrum can be obtained in a similar way, either from more complicated
numerical expressions [119] or by directly simulating the coalescent process backwards in time [143]. This
is extremely important, since frequency spectra in natural populations rarely agree with Eq. (1.45b). The
simplest way to “fix” this (and still preserve the nice properties of the neutral model) is to assume that the
population size has varied with time (which is surely true at some level).

A variety of computational methods now exist to infer N () from the observed SFS [121,29]. A related
class of methods exploits the fact that sufficiently closely spaced sites will often share the same genealogy,
rather than evolving independently. For a pair of individuals, the probability of observing £ differences in

a block of L such sites is given by

(150)

k
Pl = k] = <<L“ T“IE,RCA) eLNTMRCA> .

When aggregated across the genome, variation in II will provide information about the distribution of
TvrcA, and hence N (t) [212, 276, 131, 314]. The accuracy of such estimates can be difficult to verify; how-
ever, in humans (one of the best studied examples), many qualitative features of the inferred demographic

history appear to be consistent with the archaeological record [212].

1.6 MULTI-LOCUS MODELS AND THE IMPORTANCE OF LINKAGE

Our discussion thus far has focused on the competition between two variants at a single site in the genome.
But in practice, real genomes contain anywhere from several thousand sites (in the smallest viruses) to
several billion sites (in higher eukaryotes), so that many more than two variants are possible. What use are
our single-site models in this case?

As we alluded to earlier, there are three scenarios where single-site genomes can still be useful as effective

models, even when we know that they are embedded in a larger genome:

1. Evolution is perfectly neutral. If there are no fitness differences, sites cannot influence each other by
definition, and neighboring sites are only relevant when investigating correlations between them.
In this case, there is little evolution in the traditional sense: DNA is just another phenotype that is

slaved to the genealogy of the population.

2. Evolution is perfectly sequential. Either the population size or the mutation rate is sufficiently small
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that no more than two variants are ever present in the population at the same time, and we may
safely restrict our attention to the most recently mutated site. On long timescales, the population
can be viewed as a single point that wanders through the space of possible genotypes. This is known

as the weak mutation limit [228].

3. Evolution is perfectly parallel across the genome. Neighboring sites recombine sufficiently fre-
quently that they effectively evolve independently. This is known as free recombination or linkage

equilibrium [254]

If the goal is to investigate evolution (rather than demography), then the most interesting regions of the
genome will naturally be those where selection plays an important role. In most of these cases, evolution
will neither be perfectly sequential nor perfectly parallel. Instead, entire chromosomes are inherited and
selected as a unit. Since neighboring sites are rarely broken up by recombination, blocks of L consecutive
sites will often be inherited together for their entire genealogical history [251]. The number of sites in
each block can vary dramatically depending on the rate of recombination: in humans, L is estimated to be
~ 10 [341], while self-fertilizing organisms like nematodes can have much larger blocks (L ~ 10%) [293].
In asexually reproducing microbes and cancer tumors, L can encompass the entire genome.

To model evolution in one of these non-recombining blocks, we must in principle track the frequencies
of all 2L possible¥ genotypes. We can index these genotypes with an L-dimensional vector § € {0, 1}, so
that the frequency of each genotype is denoted by f(§). A natural generalization of the continuum model

in Eq. (1.13) in this case is

o/ (7 o .
J(;(tg): X(@) =2 XD | F@+ 3 [Mg*wgf(g’)—ugwg*’f(ﬁ)
g |g'—g1=1
selection muta‘rtion

(rs1)

+ Z (659 — F(J)] N n(g),

genetic drift

. . S . - .
where fig g s the mutation rate from g to ¢/, and X (g) is the fitness of genotype g. Like Eq. (1.13), this
model includes a selection term, which acts to amplify genotypes that are more fit than average, a mutation

term, which converts individuals from one genotype to another, and a term corresponding to genetic drift,

9Since there are four letters in the DNA alphabet (A,T,C,G), it might be more correct to say that there are 4L
possible genotypes. However, once we account for insertions and deletions, the true number can be higher still.
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whose complicated correlation structure is designed to ensure that 3 - f(g,¢) = 1.

In contrast to the L = 1 case, the behavior of Eq. (1.51) is still poorly understood. A large body of
existing work has focused on the L. = 2 case, where some exact results can still be obtained [84]. But until
quite recently, few results have been available for larger L, except in highly symmetric special cases.

The major difficulty for L >> 1 is that the space of genotypes is incredibly vast. This obviously creates
bookkeeping issues for Eq. (1.51), but the actual problems are more fundamental than that. When N Ly 2
1, evolution will not be perfectly sequential, since multiple genetic variants will arise before any single
variant can sweep to fixation. In this case, the population can no longer be approximated by a single pair of
mutant and wildtype strains, but will instead spread out into a “cloud” of nearby genotypes that compete
with each other for dominance. These “genotype clouds” have traditionally been analyzed by appealing to
deterministic equilibrium approximations known as mutation-selection balance, in which the long-time
behavior of f(g,t) is assumed to be close to its expected value in the absence of genetic drift [84, 78,
41]. But this places implicit restrictions on L, which are often violated in practice. In particular, since
the number of genotypes grows exponentially with L, we will often have N < 2L even when NN itself
is large. The vast majority of genotypes will therefore be unoccupied, and the zypical values of f(g,t)
will be very different than the expected value at mutation-selection balance. Instead, the typical values of
f(g,t) will be dominated by the transient dynamics of the “genotype cloud” as it moves through isolated
regions of genotype space. In the language of statistical physics, this means that replica symmetry is broken,
and that standard mean-field approaches can no longer be applied. To predict the genetic structure of the
population in this regime, we must explicitly account for these correlated transient dynamics, in which

drift, selection, and mutation will all play an important role.

1.7 OVERVIEW OF THE THESIS

One of the major aims of this thesis is to characterize the large-L behavior of Eq. (1.51) in more biologically
relevant scenarios, with a particular focus on generating predictions for the genetic divergence and diversity
statistics introduced above. Much of this work focuses on a special case of Eq. (1.51), where the fitness can

be written as a linear function of the genotype:

L
X(9) = Z 8iGi - (rs52)
=1
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In this case, correlations between sites arise purely from the dynamics in Eq. (1.51), and will generally depend
on the distribution of fitness effects (DFE),

Up(s) =p Z d(s—si). (153)

The DFE will be a key empirical parameter that enters into our models.
In Chapter 2, we present a general framework for analyzing sequence evolution in Egs. (1.51) and (r.52),

which works by coarse-graining genotype frequencies into a single-dimensional fitness distribution,

FX) =Y 8[X - X9, (r54)

and analyzing the dynamics of this quantity directly. We investigate some formal properties of the model
in the limit that the zer selective pressures are small. This provides some intuition, but it has limited direct
relevance for the rapidly evolving populations we wish to study.

We extend this approach to more realistic parameter regimes in Chapters 3-s. Chapters 3 and 4 focus
on genetic divergence in rapidly adapting populations. In particular, we obtain predictions for the rate
of accumulation of beneficial “driver” mutations (Chapter 3) and deleterious “passengers” that hitchhike
to fixation (Chapter 4). In Chapter s, we present a method for predicting genetic diversity in more well-
adapted populations, where selection operates on a large number of weakly deleterious mutations with a
significant net effect. This method works by coarse-graining the fitness distribution in Eq. (1.54), thereby
approximating the effect of several weak mutations with a single strongly-selected mutation. We also in-
troduce the concept of a “linkage block” (independently discovered by Neher et al. [253] and Weissman &
Hallatschek [345]), which shows how the effectively asexual dynamics in Eq. (1.51) can emerge in a linear
genome with a nonzero rate of recombination.

In Chapters 6 and 7, we apply the theoretical models in Chapters 3 and 4 to data from microbial evolu-
tion experiments. In Chapter 6, we present a method for inferring the DFE in experimental populations of
S. cerevisiae, by tracking the frequencies of beneficial mutations in ~ 1000 “engineered” selective sweeps.
In Chapter 7, we utilize a similar model-fitting approach to infer evolutionary parameters in a long-term
experiment in E. coli, based on existing measurements of fitness [355] and mutation accumulation [349].
The unique length of this experiment also allows us to investigate departures from the additive fitness
model in Eq. (1.52) due to epistasis. We analyze the empirical support for alternative fitness functions,
X (g), based on the “macroscopic” fitness and mutation trajectories.

In Chapters 8 and 9, we investigate the behavior of these simple models when some of the parameters
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are allowed to evolve or change in time. Chapter 8 focuses on a scenario where the local DFE,

L
Up(slg) = 1Y 6ls — (1= 2g:)si], (rs5)

i=1

evolves in time as the population moves throughout the space of genotypes. We investigate the behavior of
this model on long timescales, when adaptation plateaus and the local DFE becomes stable under further
evolution. This provides a connection between the rapidly adapting populations in Chapters 3, 4, 6, and 7
and the weak selection regimes in Chapters 2 and 5. Finally, in Chapter 9, we return to the single-site model

in Eq. (1.4) and investigate its dynamics when the fitness effects fluctuate in time.
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