
APPHYS 237 Problem Set 1

DUE: 1/21/20

Directions: Everyone should do Problems 1, 2, and 7, and one other problem of your choosing.

Data files available at: https://bgoodlab.github.io/courses/apphys237/data_files.zip

Problem 1: Molecular evolution and genetic diversity in the influenza virus

The text file influenza_HA_dna_sequences.fasta contains a list of 841 complete DNA sequences
of the hemagluttinen (HA) gene from influenza virus samples collected between 1968 and 2005.1

Hemagluttinen is a surface protein that allows the viruses to enter host cells, making it a primary
target for neutralizing antibodies. This creates a strong selection pressure for the HA gene to evolve
over time to evade these immune defenses.

(a) Calculate the number of single nucleotide di↵erences between the first sample (A/Aichi/2/1968)
and the remaining samples, and plot the results as a function of the sampling year. How many
di↵erences have accumulated over this ⇠40 year period? What fraction of the HA gene does
this account for?

(b) Calculate the number of genetic di↵erences between all pairs of strains from the same year,
and plot the distribution of this quantity aggregated across all years. Estimate the genetic
“turnover time” – i.e., how long would we have to wait for the population to accumulate the
same number of genetic di↵erences that typically separate co-circulating strains.

Problem 2: The Luria-Delbrück experiment

In the early 1940s, Salvador Luria was conducting experiments to understand what made bacteria
resistant to viruses. Many had observed that the o↵spring of resistant bacteria were also resistant,
but it was unknown whether the virus induced resistance (like animals that become resistant from
surviving an infection) or if the bacteria acquired resistance through a spontaneous mutation prior
to encountering the virus. Luria and his colleague Max Delbrück settled the question and provided
a method of measuring mutation rates, known as the Fluctuation Test, for which they received a
Nobel Prize.

Consider a population of bacteria that grows for T generations, reaching a final size of NT = N02T

cells. The population is then exposed to the virus and the number of resistant individuals are
counted (e.g. by plating and counting colonies). If resistance is induced by the virus, then the
number of resistant bacteria should be Poisson distributed with mean pNT , where p ⌧ 1 is the
probability of acquiring resistance during the encounter.

However, if resistance is acquired through spontaneous mutations, we must also account for individ-
uals that inherited their resistance phenotype from mutation events that occurred before exposure
to the virus, while the population was still growing. Assume that none of the initial N0 cells are
resistant, and let µ ⌧ 1 be the probability that each of the daughter cells acquires a mutation
during division. Let MT denote the total number of mutant cells in the population at the end of

1
The same data can also be accessed in CSV form in influenza_HA_dna_sequences.csv, though the FASTA

format is more commonly encountered in the wild.
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the growth phase. The distribution of MT is known as the Luria-Delbrück distribution, and it
remains an active area of research today.

(a) What is the expected number of new mutations that are produced in generation t? Call this
number ✓(t). The actual number of mutations that are produced will be a random variable
which we will denote by m(t). We will assume that m(t) will be Poisson distributed with
mean ✓(t).

(b) If a mutation arises in an individual at generation t, how many descendants does it leave at
time T , assuming that it grows deterministically? Call this number n(t). Write an expression
for MT as a sum over m(t) and n(t). For simplicity, you may assume that mutations are
su�ciently rare that all mutations arise in previously non-resistant cells.

(c) Use your results to calculate the mean and variance of MT , which we will denote by hMT i

and Var(MT ). It is useful to compare these quantities to their expected relationship under a
Poisson distribution using using a so-called Fano factor,

F =
Var(Mt)

hMti
(1)

which is equal to 1 for Poisson distributions. How much larger is F for the Luria-Delbrück
distribution? How might you use this information to distinguish between the induction vs
mutation hypotheses above?

(d) Unfortunately, the same properties of the Luria-Delbrück distribution that allow us to distin-
guish the two hypotheses make it di�cult to measure hMti and Var(Mt) in practice. To see
this, suppose we ran n independent replicates of this experiment and calculated the sample
average,

MT =
1

n

nX

i=1

MT,i (2)

For su�ciently large n, the sample average MT will approach the theoretical mean hMT i.
The relative error can be estimated by the co�cient of variation,

CV =

q
Var(MT )

hMT i
(3)

Calculate the coe�cient of variation for MT . How many independent experiments would you
need to run to ensure a relative error of order ✏? What happens in the limit that N0µ ⌧ 1?

(e) This pathological behavior arises from the fact that the theoretical mean and variance are
averaging over rare events: “jackpot” mutations that occur early in the growup phase and
have an outsized impact on Mt. When N0µ � 1, large numbers of jackpots occur in the
first generation of growth, and the behavior of Mt is relatively predictable. However, when
N0µ ⌧ 1, jackpots are so rare that they will not occur in a typical experiment, though they
continue to influence the theoretical mean. This suggests that there is reason for hope: if
jackpots are causing all the problems, then the behavior across replicate experiments should
be more predictable if we know that some jackpots have definitely not occured – we just have
to come up with a way to predict the typical values of Mt in a set of n experiments. We will
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explore one such scheme here.

Calculate the total number of mutations that are expected to arise before generation t, across
all n populations. Call this number ✓<(t|n). Find the critical value t⇤ where ✓<(t⇤|n) ⇠ 1. For
t ⌧ t

⇤, there will typically not be any mutations earlier than t in any of our replicates. This
suggests that one might be able to predict the typical behavior by repeating our calculations
above with a modified version of ✓(t):

✓̂(t|n) =

(
0 if t < t

⇤(n)

✓(t) if t � t
⇤(n)

(4)

which enforces this typicality constraint. Use this expression to calculate the typical mean
and variance across the replicates as a function of n, as well as the coe�cient of variation. Is
there still any pathological behavior in the N0µ ⌧ 1 limit? Does the coe�cient of variation
scale in the way we expect from the central limit theorem?

(f) Bonus: At this point you might be worried, because we did not use the full Luria Delbrück
distribution for our serial dilution model in class. However, the serial dilution model contains
one extra step that we have not considered here: the dilution of the final culture into a new
flask with the initial size N0. The number that matters is the number of mutants in the new
flask, M 0

T , which will be Poisson distributed with a random mean, N0(MT /NT ). Calculate
the mean and variance of M 0

T , as well as the Fano factor. How large is the deviation from the
Poisson approximation we used in class?

Problem 3: Single Locus Simulations

(a) Write a computer program that simulates the frequency trajectory of a mutation in the serial
dilution model described in the lecture notes. Plot a few example trajectories starting at
an initial frequency of f(0) = 0.5, with di↵erent values of N and s (N = 102, 103, 106,
s = 0, 10�2

, 10�3.

(b) Modify your simulation to include mutations, using the simple approximation described in the
Lecture notes. Plot a few example trajectories with N = 104, f(0) = 0, and µ = 10�5, both
for (i) a deleterious mutation with s = �10�3 and (ii) a beneficial mutation with s = 10�2.

Problem 4: Competitive fitness in a long term evolution experiment in E. coli

One of the longest running laboratory evolution experiments was started by Richard Lenski in 1988
and is still in progress today. Lenski founded 12 independent populations of E. coli from a common
ancestor strain, and he and his team have been propagating these 12 populations in glucose-limited
media using a serial dilution protocol similar to what we discussed in class. This experiment uses
a 1:100 dilution factor, so that the populations experience about log2(100) ⇡ 7 generations a day
with a daily bottleneck size of Nb ⇡ 5 ⇥ 106. Every 500 generations, a copy of each population
is cryogenically preserved for future study. After more than 30 years, Lenski’s experiment has
produced >1500 archived samples covering >70,000 generations of evolution in the same controlled
conditions.

Among other applications, these frozen population samples are used to measure the fitness of
the evolved populations using a variant of the fitness assay we described in class. Variants of
the ancestral strains were created that produce di↵erent colored colonies when grown on a special
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media in Petri dishes. These modified ancestral strains are mixed with the evolved populations
(usually at a 50:50 ratio) and are competed for �t generations (typically one daily cycle). The
relative frequencies at the beginning and end of the cycle are measured by plating the cultures and
counting the number of colonies of each type. The relative fitness of the evolved population (S)
can be estimated by the plug-in estimator,

S ⌘
1

�t
log

✓
Npop(�t)

Nanc(�t)

Nanc(0)

Npop(0)

◆
. (5)

where Ni(t) denotes the number of colonies of each type at a given timepoint.

(a) The file LTEE_ancestor_fitness_assays.txt contains the results of ⇠500 fitness assays
performed by Wiser et al (Science, 2012). Approximately 250 samples were assayed across 6
populations, with 2 biological replicates for most of the samples. The di↵erence between the
fitness estimates from these biological replicates provides an estimate of the uncertainty in
the fitness measurements. Plot the distribution of these errors across all timepoints. What is
the typical uncertainty in an individual fitness measurement using this approach?

(b) After averaging over the two replicates at each timepoint, plot the fitness trajectories for each
population as a function of time.

(c) Previous studies have argued that these fitness trajectories can be fit by the logarithmic
function,

X(t) = Xc log

✓
v0t

Xc

◆
, (6)

with Xc ⇡ 4.6⇥ 10�2 and v0 = 7.7⇥ 10�4. Plot this function against your data. Does it look
consistent? What is the predicted fitness gain between generation 40,000 and 50,000? How
does this compare to the measurement uncertainty estimated above?

(d) The file LTEE_40k_fitness_assays.txt contains another ⇠800 fitness assays performed by
Lenski et al (Proc R Soc B, 2012). Unlike the previous experiments, where the evolved poplu-
ations are competed against the ancestor, these experiments compete the evolved population
against a reference strain that was isolated from one of the populations at generation 40,000.
They also use a longer competition period (3 daily cycles, rather than 1) and perform more
biological replicates for each sample. Use these data to calculate the gain in fitness between
generation 40,000 and 50,000, and between generation 50,000 and 60,000, along with the
uncertainties in these estimates. Is there evidence that fitness is still increasing in Lenski’s
experiment at these later timepoints?

Problem 5: Pooled fitness assay

Suppose that you have a population that contains a mixture of K di↵erent strains, each with its
own fitness di↵erence sk (k = 1, . . . ,K) relative to a reference strain.

(a) Using the serial dilution model we discussed in class, calculate the relative frequencies of each
strain after one cycle of growth (i.e., just before the dilution step), assuming that each strain
starts at a relative frequency fk(0).
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(b) Neglecting noise, solve for the relative frequencies of each strain after another cycle. Can
you write a formula for the relative frequencies after an arbitrary number of cycles? or an
arbitrary time t?

(c) Suppose that the fitnesses sk were all shifted by a constant amount c. What happens to the
dynamics of the strain frequencies fk(t)? What does this mean for our ability to measure sk

by tracking strain frequencies over time?

(d) One way to avoid this issue is to ensure that one of the strains in the pool (e.g. k = 0) is the
common reference against which fitness is measured (e.g. the wildtype), so that sk = 0. What
is the value of fk(t)/f0(t) in this case? Use this result to generalize the formula in Eq. 5 to
the multi-strain case, where you have counts Nk of each strain k at a pair of timepoints. This
is known as a pooled fitness assay . With the advent of DNA sequencing, pooled fitness
assays have become a common tool to measure the fitness of large collections of mutants
simultaneously (e.g. all single gene deletions of a given strain) – we will see examples of these
in a later problem.

(e) For the moment, let’s stay in theory land. Let’s assume that K is very large, and that the
fitnesses of the non-wildtype strains are normally distributed with mean µ = 0 and variance
�
2. Assuming that the wildtype strain starts at frequency f0, and all the remaining strains

are evenly distributed, write a formula for the frequency trajectory of a focal strain k with
fitness sk > 0 as a function of time. The following property of normal distributions may be
useful:

he
zx
i = e

1
2�

2z2 (7)

Is the frequency trajectory monotonic? If not, when does it reach its maximum?

Problem 6: Experimental evolution in a chemostat (in theory)

In addition to the serial dilution model we discussed in class, another common protocol for exper-
imental evolution makes use of a continuous-culture device known as a chemostat . A chemostat
is a well-mixed vessel (volume V ) in which nutrients are fed in at a fixed rate via an input tube,
and cells and nutrients are continually removed through an output tube. In this setup, the num-
ber of cells in the vessel, n(t), as well as the nutrient concentration, c(t) (in units of cell biomass
equivalents per unit volume), are both dynamical variables that adjust according to the internal
dynamics of the system. For a single strain growing in isolation, these dynamics can be written in
the form

@n

@t
= r(c)n| {z }

growth

� �n|{z}
dilution

(8)

@c

@t
= �cin|{z}

input

� �c|{z}
dilution

�
r(c)n

V| {z }
growth

(9)

where � is the dilution factor (i.e., the fraction of the total vessel volume that flows in and out
per unit time), cin is the concetration of nutrients in the input tube, and r(c) is the growth rate
of the microbe as a function of the resource concentration. In the absence of evolution, the system
will eventually approach a (non-equilibrium) steady state characterized by a constant values of n(t)
and c(t). Let’s call them n(t) = n

⇤ and c(t) = c
⇤, respectively.
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(a) Solve for the growth rate, r⇤ ⌘ r(c⇤) that is achieved at this steady state – this gives a measure
of the e↵ective generation time, ⌧g = 1/r⇤. How do r

⇤ and ⌧g depend on the concentration of the
input nutrients, cin?

(b) Solve for the population size n
⇤ as a function of c⇤. In many cases of interest, we will have

c
⇤
⌧ cin – i.e., the microbes are eating most of the nutrients that we put it in the chemostat.

Calculate the lowest order contribution to n
⇤ in the limit that c

⇤
⌧ cin. How does this quantity

depend on the growth function r(c)? How do you explain this result?

(c) Now we will consider how the system relaxes to this steady state. It is often useful to consider
an adiabatic limit, where the dynamics of the nutrient concentration relax more rapidly than the
dynamics of population size. Formally, this is equivalent to neglecting both the @tc and ��c terms
in Eq. 9. Use this approximation to eliminate the resource concentration from Eq. 8 and obtain a
di↵erential equation that depends only on the current value of n(t). Solve this equation for n(t)
as a function of n(0). Assuming that n(0) 6= n

⇤, how quickly does the system relax to the steady
state?

(d) We will now consider competition dynamics between two strains. Suppose we have a wildtype
strain nwt with growth function r(c). The functional form of r(c) is not typically known, but in
simple cases, it takes on a Monod-like form,

r(c) = rmax

✓
c

c+K

◆
, (10)

where rmax is proportional to the expression of an enzyme in the limiting metabolic pathway.
Suppose have a mutant nmut that increases the expression of this enzyme by a factor (1+ s). Write
down joint model for nwt, and nmut, and c. Use the adiabatic approximation above to eliminate
c(t) and obtain an e↵ective model that depends only on nwt and nmut. Use this model to obtain a
corresponding equation for the total population size, N(t) = nwt(t) + nmut(t).

(e) Suppose that nwt(0) + nmut(0) = n
⇤. What can we say about the dynamics of N(t) at later

times? Use this result to eliminate nwt(t) and obtain an e↵ective model for the mutant frequency
f(t) = nmut(t)/N(t). To lowest order in s, how does the form of this model compare to the serial
dilution model discussed in class?

(f) Finally, we will briefly consider the e↵ects of stochasticity. This can be tricky to define in
continuous time, so let’s imagine that all of the input and output flow in our device occurs in
discrete timesteps of length �t. What is the probability that a single cell falls in the dilution volume
�V�t? If there are currently nmut(t) and nwt cells of the mutant and wildtype, respectively, what
is the typical variation in the number of cells of each type that are diluted out in each timestep?
How does this compare to the noise term in the serial dilution model from class?

Problem 7: The E. coli genome

The text file ecoli_reference_genome.fasta contains the genome sequence of the bacterium
Escherichia coli – specifically, the genome sequence of a lab strain named REL606, which we will
encounter several times throughout this course.

(a) How long is this E. coli genome? What is the relative fraction of A’s, T’s, C’s, and G’s?
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(b) Calculate the distribution of 20-mer’s in the genome (i.e., the number of times you see each
sequence of 20 bases, allowing for overlaps). What fraction of the 20-mer’s occur only once?
What does this tell us about fraction of sites in the E. coli genome that can be uniquely
identified by a 20bp sequence?

(c) The text file ecoli_genes.txt contains a list of all the genes in this strain, along with their
locations (in 1-based coordinates), and whether they are transcribed in the forward or reverse
orientation. Plot the distribution of gene lengths. How many genes are there? What fraction
of the genome do they account for? What fraction of genes are transcribed in the reverse
orientation?

(d) Using the genetic code (https://en.wikipedia.org/wiki/DNA_codon_table), calculate the
total number of possible synonymous mutations (those that don’t change the amino acid
sequence of the protein), the number of nonsense mutations (those that change one of the
existing amino acids to a stop codon), and the number of missense mutations (those that
change one of the amino acids without introducing a stop codon). You may assume that all
base pair transitions are equally likely.
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APPHYS 237 Problem Set 2

DUE: 2/4/20

Data files available at: https://bgoodlab.github.io/courses/apphys237/data_files.zip

Problem 1: Measuring the per-base-pair mutation rate with the Luria-Delbrück

fluctuation test

In Problem 2 of Problem Set 1, you worked out the theory behind the Luria-Delbrück experiment,
which is often used to estimate mutation rates in the laboratory (the fluctuation test). The file
lang_murray_08_fluctuation_test.txt contains the results of one such experiment performed
by Lang and Murray.2 Approximately n = 720 populations of S. cerevisiae (baker’s yeast) were
grown from an initial population size of N0 = 2000 for a total of T = 13 generations, and then
plated on Petri dishes containing the drug 5-fluoroorotic acid (“5-FOA”). Resistance to this drug is
primarily caused by loss-of-function mutations in the URA3 gene.3 Thus, the number of resistant
colonies in this experiment reflects the aggregate mutation rate for loss-of-function variants in this
gene (U�URA3). Lang and Murray used this fact, along with some targeted DNA sequencing, to
back out an estimate of the per-base-pair mutation rate. We will work through the key steps in
their analysis below.

(a) The colony counts in this experiment should follow a Luria-Delbrück distribution, which has
some peculiar sampling properties due to the presence of rare “jackpot” mutations. Can you
pick out a few of these jackpots by eye in the data file?

(b) Revisiting the theory in Problem 2 of Problem Set 1, calculate the probability p0 that we
observe zero resistant colonies in a particular population. We can estimate this number using
the observed fraction of plates with zero colonies:

p0 =
# experiments with MT,i = 0

n
(11)

which satisfies hpi = p0. This was also true for the sample mean MT in Problem 2 of Problem
Set 1. Can you explain why we expect p0 to be more robust to the presence of rare jackpot
events?

(c) Rearrange your expression in (b) to solve for U�URA3 as a function of p0, and obtain an
estimator Û�URA3 by replacing p0 with the measured value p0. What is the mean and variance
of Û�URA3 in limit of many replicates (n � 1)? Estimate U�URA3 and its uncertainty using
the data provided above. Based on the inferred parameters, do you think that this is a
reasonable fitting procedure?

(d) To connecting the phenotypic mutation rate Û�URA3 to a per-base-pair mutation rate, Lang
and Murray used Sanger sequencing to sequence the URA3 gene in 237 of the resistant colonies
from di↵erent plates in their experiment. 30 of these colonies did not have any mutations in

2
Lang, G.I. and A.W. Murray (2008), “Estimating the per-base-pair mutation rate in the yeast Saccharomyces

cerevisiae,” Genetics 178:67–82.
3
5-FOA is nontoxic on its own, but it is converted into a toxic byproduct (5-fluoro-uracil) by the uracil biosynthesis

pathway. The URA3 gene catalyzes a key step in this process, so loss-of-function variants in URA3 confer resistance

when grown in media containing an external source of uracil.
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URA3, and presumably reflect resistance mutations that arose in other genes. The remaining
colonies had just a single mutation in URA3 (or adjacent mutations that likely arose as a
complex mutational event). The distribution of mutations is broken down in the following
table:

Mutation type Number of colonies
Nonsense SNVs 64
Other SNVs 103

Indels and etc. 40
WT URA3 30

The length of the URA3 gene is 803bp, so there are a total of 2412 possible single nucleotide
variants that could be produced. From the sequence of URA3, 123 of these variants results in a
nonsense mutation (i.e. a preumature stop codon, which we assume leads to a nonfunctional
URA3 protein). Use these numbers to convert the phenotypic mutation rate U�URA to a
per-base-pair estimate (assuming that all single nucleotide mutations are equally likely).

(e) The same data allow us to estimate another interesting but di�cult-to-observe quantity:
the probability that a random single nucleotide mutation disrupts the function of a protein.
Estimate this quantity using the URA3 data above.

Problem 2: Measuring the per-base-pair mutation rate from the accumulation

of synonymous mutations

The falling costs of whole-genome DNA sequence have made it possible to use more direct ap-
proaches to estimate the per-site-mutation rate. One of the simplest is based on the accumulation
of neutral mutations along a single line of descent. Suppose that we propagate a given strain for T
generations and sequence a single clonal isolate from the population at the final timepoint. Under
very general conditions, one can show that the accumulation of neutral mutations between the
ancestor and sequenced individual will occur as a collection of independent Poisson process with
rate µT per site, regardless of the population size, mode of propagation, or selection elsewhere on
the genome.4

(a) If we assume that all synonymous mutations are neutral, use the theorem above to derive an
estimate for the per site mutation rate based on the total number of synonymous mutations
we observe in n isolates sampled from n independently evolved populations?

(b) The file tenaillon_etal_2012_mutations.txt contains the results of one such experiment
performed by Tenaillon and colleagues.5 A total of n = 114 populations of E. coli were
evolved in high temperature for T = 2000 generations, and a single clone was isolated and
sequenced at the final timepoint. Use your results in part (a), along with the total number
of synonymous sites you calculated in Problem 7 of Problem Set 1,6 to estimate the per site
mutation rate µ from these data. What is the uncertainty in your estimate?

(c) A 115th population was also sequenced, but the clone was found to contain a much higher
number of mutations than the others (tenaillon_etal_2012_outlier_clone.txt). Use the

4
A particularly elegant proof can be made using coalescent theory, which we will cover later in the course.

5
O. Tenaillon, et al (2012), “The Molecular Diversity of Adaptive Convergence,” Science 335:457–461.

6
The ancestor of this experiment was the same REL606 strain in Problem 7 of Problem Set 1.
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approach you developed in (b) to estimate the per site mutation rate from this strain as well.
Based on the uncertainties, can you conclude that it is significantly di↵erent than the other
114 clones? Since the populations were evolved in identical conditions, we must conclude that
the outlier clone acquired a mutation that increased its genome-wide mutation rate at some
point during the experiment – we will revisit the dynamics of these mutator phentotypes
later in the course.

Problem 3: The molecular diversity of adaptive convergence

In the previous problem, you examined the accumulation of synonymous mutations in a collection
of E. coli populations that were adapted to high temperature for T = 2000 generations. In this
problem, we will examine the remaining mutations to see what we can learn about the targets of
natural selection in this environment.

(a) Most tests for natural selection are based on a comparison between putatively neutral regions
of the genome and those that might be subject to selection. A classic approach is to com-
pare the relative divergence (i.e., the number of observed mutations per site) at synonymous
vs nonsynonymous sites – also known as a dN/dS ratio. If synonymous mutations evolve
neutrally, then a dN/dS ratio greater than 1 indicates that some of the nonsynonymous mu-
tations must have been positively selected. Calculate separate dN/dS ratios for the missense
and nonsense mutations in the Tenaillon et al data (tenaillon_etal_2012_mutations.txt).
Is there enough evidence to conclude that mutations in both classes are positively selected?

(b) The dN/dS test is a relatively coarse measurement, since relies on very general a priori

considerations to partition mutations into putatively neutral and functional categories. In
replicated experimental designs like this one, repeated observations of the same (or similar)
genetic change in di↵erent populations provide a powerful alternative for identifying fine-
grained targets of selection. This is an example of a more general concept known as parallel
or convergent evolution.

We’ll first examine signatures of convergence at the single nucleotide level. Focusing on the
point mutations7 in the Tenaillon et al dataset, calculate the total number of sites that were
mutated m or more times across the n = 114 replicates, and plot this function for di↵erent
values of m. How many sites would we expect to see at a given value of m if the same number
of mutations were distributed evenly across all the sites in the E. coli

8 genome? Is there
a value of m above which you would conclude that the mutations are probably beneficial?
What fraction of the observed point mutations do these sites account for?

(c) Now repeat part (b) at the gene level. Calculate the total number of genes in which we
observed m or more mutations9 across the n = 114 datasets, and plot this function for
di↵erent values of m. How many genes would we expect to see at a given value of m if the
same number of mutations were distributed evenly across the genes in the E. coli

10 genome?
Is there a value of m above which you would conclude that some mutations in the gene are
probably beneficial? What fraction of the observed mutations do these genes acount for?

7
i.e., exclude indel or structural mutations

8
Recall that you calculated the genome length for this strain of E. coli in Problem 7 of Problem Set 1.

9
Include all nonsense and missense mutations, as well as indel mutations that occurred in a gene.

10
Recall that you calculated the number of genes for this strain of E. coli in Problem 7 of Problem Set 1.
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(d) Part (c) shows that some genes acquire mutations at significantly higher rates than expected
by chance, presumably because they are targeted by positive selection. We can try to esti-
mate the total number of genes that are targeted in this way with the help of a saturation
curve . By choosing random subsets of the replicate populations, plot the average number of
genes that were mutated in 3 or more populations in subsamples of size n = 3, . . . , 114. Does
this function look like it has saturated at n = 114?

To gain some theoretical intuition for these saturation curves, let pi be the probability that
we observe a mutation in gene i in a given population. What is the probability of observing
mutations in this gene in �3 populations in an experiment with n replicate populations? Plot
this quantity as a function of n for pi = 3/114, 5/114, and 10/114. For each value of pi, what
fraction of genes are likely to be detected in an experiment with n = 114 replicates?

Based on these theoretical and empirical curves, what is your best guess for the total number
of genes that are likely to be beneficial in this environment? (There is no right or wrong
answer for this part.)

(e) A potential complication for the saturation curve analysis is part (d) is that the beneficial
e↵ect of a mutation may depend on other mutations that have accumulated in the same
genetic background. If true, this could potentially show up in the co-occurence patterns of
mutations in di↵erent replicate populations. As an example, consider mutations in the rho

and iclR genes. How many populations have mutations in both genes simultaneously? Is this
more or less than we expect by chance, given the same number of total mutations in both
genes? Based on your findings, do you think this example is consistent with a simple model
where mutations in iclR are only beneficial in a genetic background with a rho mutation?

Problem 4: Universality and non-universality among serial dilution models

(a) Let’s consider a more elaborate version of the serial dilution model we discussed in class,
in which the transfer processes introduces some growth rate variability across individuals.
Specifically, let’s assume that the fitness of each individual at the beginning of the daily cycle
is drawn from a Gaussian distribution with a genotype-dependent mean and variance. We’ll
let r and �

2 denote the mean and variance for wildtype individuals, while r + s and �
2 + ⌫

will denote the mean and variance for mutant individuals. We’ll assume that these fitness
perturbations are inherited by all of an individual’s descendants over the entire course of the
daily cycle.11 Calculate the mean and variance of the total mutation frequency after one cycle
to leading order in 1/N , s, and ⌫. Does this model lie in the same universality class as the
basic serial dilution model we discussed in class? If so, what are the e↵ective parameters se
and Ne?

(b) Now let’s consider a slightly di↵erent scenario, in which fitness perturbations are created by
environmental fluctuations that are shared across all individuals. Specifically, let’s assume
that the fitness di↵erence between mutant and wildtype in a given cycle is normally distributed
with mean s and variance ⌫. Calculate the mean and variance of the mutation frequency after
one cycle to leading order in 1/N , s, and ⌫. Does this model lie in the same universality class
as the serial dilution model we discussed in class?

11
In practice, one might imagine that these fitness perturbations will be lost over a few divisions. Our calculation

therefore represents an upper bound on the magnitude of these e↵ects.
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Problem 5: Mutation accumulation in individuals vs populations

Suppose we found a population from a clonal ancestor and allow it to evolve for t generations.

1. Suppose that you know the population frequency of mutations (f`) at each site ` in the genome
(` = 1, . . . , L). Write a sampling formula for the average number of mutations in a randomly
sampled individual from the population (M(t)) as a function of f`.

2. Write a sampling formula for the average number of mutations in a randomly sampled pair

of individuals in the population. What about a random sample of size n?

3. Write a stochastic di↵erential equation for f` assuming neutral evolution. Use this model
to derive a deterministic di↵erential equation for the average frequency, hf`(t)i. Solve this
equation and show how M(t) grows with time.

4. Now use the stochastic model to derive a deterministic equation for the second moment
hf`(t)2i. Solve this equation and show how M2(t) grows with time. How long do we have to
wait for the two expressions to give similar results? How can we explain the discrepancy at
short times?

Problem 6: Sweep times vs fixation times

The goal of this problem is to give you a numerical feeling for some of the relevant timescales of
natural selection.

(a) How many generations are required for a beneficial mutation with fitness e↵ect s to go from
10% to 90% frequency? From 1% to 99%? We will call this the sweep timescale , Tsw,
since it is the time required for a mutation to visibly sweep through a population (e.g. in
metagenomic data).

(b) Estimate the sweep timescale (in days) for a mutation with a 1% fitness benefit in Lenski’s
long-term evolution experiment in E. coli (Problem 4 of Problem Set 1). Then estimate the
same quantity for a population of bacteria in an individual’s gut microbiome (we don’t know
what the generation time is, but estimates range from ⇠ 1� 10 generations per day).

(c) We can contrast the sweep timescale Tsw with the fixation timescale Tfix ⇠
1
s log(Nes),

which is the time required for a newly produced variant to reach observable frequencies in the
population (e.g., 50%). (i) estimate the fixation timescale for the same mutation in Lenski’s
experiment (Ne ⇡ 3 ⇥ 107) and compare it with the sweep time above. (ii) Repeat for the
population of gut bacteria, assuming that the e↵ective population size is similar to the census
population size (⇠1012 cells).

(d) Use your answer in (b) to speculate about the following scenario: let’s imagine that a host
starts a new diet that renders a particular metabolic pathway unnecessary for the gut bacteria,
and that a ⇠1% benefit could be gained by eliminating the resources that are currently
devoted to it. How long would the individual have to adhere to the new diet before we could
hope to observe a new loss-of-function variant at appreciable frequencies in the within-host
population? How does this compare this to the case where a strain with the loss-of-function
mutation was already present in the host at 1% frequency.

12



Problem 7: Sequence conservation and broadly neutralizing antibodies in in-

fluenza

One of the most powerful and widely used principles in evolutionary biology is the use of sequence
conservation to infer function. The basic idea is related to the concept of survivorship bias, as
illustrated by the following example. (Text and image reproduced from Wikipedia.)

During World War II, researchers from the Center for Naval Analyses had conducted

a study of the damage done to aircraft that had returned from missions, and had rec-

ommended that armor be added to the areas that showed the most damage. Statistician

Abraham Wald noted that the study only considered the aircraft that had survived their

missions—the bombers that had been shot down were not present for the damage as-

sessment. The holes in the returning aircraft, then, represented areas where a bomber

could take damage and still return home safely. Wald proposed that the Navy reinforce

areas where the returning aircraft were unscathed, since those were the areas that, if hit,

would cause the plane to be lost. His work is considered seminal in the then-nascent

discipline of operational research.

Just like the bullet holes in the aircraft above – mutations are constantly creating ”holes” in the
genomes of living organisms. The mutations that disrupt critical biological functions will rarely be
observed in a sample of living individuals. Turning this argument around, we might expect that
regions of the genome that are preferentially depleted for genetic variation might have important
biological function.
The text file influenza_HA_protein_sequences.fasta contains and alignment of the amino-acid
sequences from the HA gene in several di↵erent influenza strains.

Problem 8: The Kolmogorov backward equation

In class, we derived the Fokker-Planck equation (or forward equation) for the probability density
p(f, t|f0) of observing a mutation at frequency f at time t, given that it started at frequency f0

at time t = 0. In this problem, you will derive a related partial di↵erential equation known as the
backward equation , which is particularly useful for calculating fixation probabilities and fixation
times. For concreteness, we will consider the standard single locus di↵usion process,

@f

@t
= sf(1� f) +

r
f(1� f)

N
⌘(t) (12)

though the same derivation will apply to a large class of Markov models in the same di↵usion limit.

(a) Start with the probability density p(f, t|f0) and consider what happens in the very first
timestep (0, dt). Write a recursion relation for p(f, t|f0) by integrating over the intermediate
frequency f

0 at time dt.

(b) Taylor expand the integral equation to linear order in dt to obtain a partial di↵erential
equation for p(f, t|f0). This is known as the backward equation .

(c) When f = 1, the backward equation becomes a partial di↵erential equation for the fixation
probability, pfix(f0, t). What boundary conditions must this function satisfy at f0 = 0 and
f0 = 1?

(d) Using your answers in (b) and (c), solve for the long-term fixation probability, assuming that
it approaches a constant value pfix(f0) at long times.

13



(e) Repeat your derivation in parts (a)-(c) above to calculate the probability that a mutation
reaches some other frequency fmax before it goes extinct, given that it starts at frequency f0.

14



APPHYS 237 Problem Set 3

DUE: 2/18

Data files available at: https://bgoodlab.github.io/courses/apphys237/data_files.zip

Problem 1: Continuous-time branching process

Another classic population model is the continuous-time branching process. This is a discrete-
individual model, in which every individual has an independent probability of giving birth or dying
in an infinitesimal time interval dt. We’ll denote the birth rate and death rate by B and D respec-
tively. The continuous-time branching process has numerous applications outside of evolution, e.g.
the production of muons from chain reactions seeded by cosmic rays in the atmosphere. Here, we
will use it as a model of the number of mutant individuals in a large population. To that end, we’ll
measure time in (wildtype) generations by taking B = 1 + b and D = 1 + d.

(a) Let n(t) denote the (random) number of descendants of a single individual after t genera-
tions. Derive a di↵erential equation for the generating function H(z, t) = he

�zn(t)
i, and the

extinction probability pext(t)

Hint: This is easiest to do using a recursion argument. Start by writing e
�zn(t+dt) on the left

hand side, and consider the very first time slice (0, dt). At the end of this time slice, we will
either have 1, 2, or 0 individuals. What are the relative probabilities of these three events?
Conditioned on each outcome, can you write e�zn(t+dt) using one or more independent copies
of the original process n(t)? If so, one can average both sides and expand to lowest order in
dt to arrive at a di↵erential equation for H(z, t).

(b) Solve your di↵erential equation in part (a) subject to the initial condition n(0) = 1. Compare
your results to di↵usion model, @tf = sef +

p
f/Ne⌘(t), that we discussed in class:

Hn(z) ⌘ he
�zNf

i = exp

"
ze

set

1 + zN
2Nes

(eset � 1)

#
(13)

Based on this result, do you think the continuous-time branching process belongs to the same
universality class in the limit that b, d ⌧ 1? If so, what are the e↵ective parameters? Use
this result to comment on relevance of discreteness of individuals or birth rate vs death rate
di↵erences in the di↵usion limit. Is there a timescale where you expect the convergence to
break down?

(c) Use the same reasoning as in part (a) to derive di↵erential equations for the mean hn(t)i and
the non-extinction probability psurvival(t).

(d) Solve your di↵erential equations in (a) and (b) subject to the initial condition n(0) = 1.
Compare your results to di↵usion model, @tf = sef +

p
f/Ne⌘(t), that we discussed in class:

hn(t)i = e
set (14)

psurvival(t) =
2Nes

1� e�st

✓
1

N

◆
(15)
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Based on this result, do you think the continuous-time branching process belongs to the same
universality class in the limit that b, d ⌧ 1? If so, what are the e↵ective parameters? Use
this result to comment on relevance of discreteness of individuals or birth rate vs death rate
di↵erences in the di↵usion limit.

Problem 2: Continuous-time branching process with bursty reproduction

In this problem, we’ll consider a variant of the continuous time-branching process from Problem 1
of Problem Set 3, in which birth events now result in a “burst” of exactly K o↵spring.12

(a) Repeat your derivation in Problem 1 of Problem Set 3 to calculate the mean value hn(t)i.
If D = 1, solve for the value of B such that the long-term average growth rate is still
hn(t)i = n(0)est.

(b) Now calculate the long-term survival probability psurvival in the limit that s ⌧ 1 and compare
this result to the ordinary branching process with net growth rate s? Does increasing the
burst size make it more or less likely for a lineage to survive?

Problem 3: Mutation-selection-drift balance

The goal of this problem is to give you some practice using the method-of-characteristics approach
we discussed in class.

(a) Calculate the generating function, H(z, t), for mutation-selection-drift model,

@f

@t
= µ+ sf +

r
f

N
⌘(t) (16)

subject to the initial condition f(0) = 0.

(b) Use your answer in (a) to show that for t ⌧ 1/s, the distribution of f is indistinguishable
from a neutral mutation, even if Ns � 1.

(c) Assuming that the mutation is deleterious (s < 0), calculate the long-term mutation-selection-
drift balance.

(d) Assuming that the mutation is beneficial, calculate the distribution of the establishment
prefactor ⌫(t) = f(t)e�st for t � 1/s, and compare this to the deterministic solution of .
When is the deterministic solution a good approximation, and when does it break down?

Problem 4: Typical paths of non-extinct mutations

A convenient property of the linear branching process model [@tf = sf +
p
f/N⌘(t)] is that its

generating function H(z, t) has a simple exponential dependence on the initial condition f0. As
we will see below, this o↵ers a convenient route for calculating multi-timepoint statistics without
solving any additional di↵erential equations.

12
This mode of reproduction is relevant for some viruses, which often produce many multiple new viral particles

per infected cell.
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1. Calculate the multi-time generating function H(z1, z2) ⌘ he
�z1f(t1)�z2f(t2) for the mutation

frequency at timepoints t1 and t2, conditioned on an initial frequency f0 at time t = 0.
(Hint: first conditer the conditional generating function he

�z2f(t2)|f1i, and then use the laws
of conditional expectation to calculate H(z1, z2).)

2. In class, we showed how the generating function can be used to calculate the typical frequency
of a mutation at time t, conditioned on non-extinction. In a similar way, we can use the
multi-time generating function to learn about the typical paths that mutations take to get to
those typical frequencies. To do so, first calculate the marginal generating function H

⇤(z1),
conditioned on non-extinction at time t2.

3. Consider a beneficial mutation (s > 0) and two timepoints t1 = t � 1/s and t2 = 2s. What
are the typical frequencies at time t1, conditioned on non-extinction at time t2? How does
this relate to the typical frequency conditioned on non-extinction at time t1?

4. Repeat your calculation in (c) for a deleterious mutation (s < 0). How does this compare
with the typical frequency conditioned on non-extinction at time t1?

5. Now consider a neutral mutation (s = 0) and timepoints t1 = t � Nf0 and t2 � t1. Do the
typical paths still look like f(t) ⇠ t/N?

Problem 5: Heuristics for recessive mutations

The goal of this problem is to have you practice using the heuristic approach we discussed in class to
work out the dynamics of recessive mutations in diploid (or more general polyploid) organisms. In
the course so far, we have primarily focused on evolution in haploid organisms (i.e., those with just a
single copy of each chromosome). Organisms with more than one copy of each chromosome open up
the possibility for recessive mutations, i.e., mutations that must be present in all chromosomes
within an individual before they can exert their cost or benefit. Some of the most well known
genetic diseases in humans (e.g. sickle cell disease) are caused by recessive mutations, so they play
an important role in the field of human genetics.

We’ll consider a very simple model of polyploid reproduction, in which individuals are formed
by randomly choosing C chromosomes that exist in the current population. In the di↵usion limit,
the population frequency of a recessive mutation will satsify

@f

@t
= sf

C(1� f) +

r
f(1� f)

CN
⌘(t) . (17)

where N is the number of individuals in the population. Unlike the single-locus models we have
been considering so far, the low-frequency limit,

@f

@t
= sf

C +

r
f

CN
⌘(t), , (18)

now includes a nonlinear selection term, so we can no longer derive an exact solution for the
dynamics using the method of characterics. However, as you will see below, the heuristic approaches
we discussed in class will continue to work perfectly well for this case.

(a) Repeat our heuristic derivation to partition frequency space into drift-dominated and selection-
dominated regimes. For which values of N and s will natural selection be e�cient?

17



(b) Use these results to calculate the fixation probability and fixation time of a strongly beneficial
recessive mutation. How does compare to the haploid case that we analyzed before?

(c) Use the same approach to analyze mutation-selection balance for a strongly deleterious re-
cessive mutation. What is the maximum typical frequency of a recessive mutation with a
near lethal e↵ect (s ⇡ 1) in a population of size N = 106? What is the typical age of such a
mutation?

Problem 6: Adaptive walks on uncorrelated fitness landscapes

An extreme limit of epistasis can be obtained by an uncorrelated fitness landscape, in which each
genotype ~g in a genome of length L is assigned a random fitness X(~g) from a common distribution
p(X). We will consider an adaptive walk on such a landscape in the SSWM limit. For simplicity,
we will take p(X) to be an exponential distribution with mean �, though our approach can be
extended to other distributions as well.

(a) Starting a random genotype with fitness X(~g) = X, what is the probability that a given
neighboring genotype has fitness benefit s = X(~g+ êi)�X(~g) > 0? What is the distribution
of s, conditioned on s > 0?

(b) Assuming that there are a large number of possible uphill steps, calculate the mean fitness
trajectory X(t) and the number of mutational steps M(t) taken by the population as a
function of time.

(c) On a finite genome, we will eventually come to a point where there are no uphill steps in the
immediate neighborhood of the population. This constitutes a local optimum. There will be
a high probability of a local optimum once the population fitness approaches a critical value,
L
R1
Xlocal

p(X)dx ⇠ 1. Solve for Xlocal as a function of L. Use your results from (c) to calculate
the average number of steps until reaching a local optimum.

(d) The logarithmic fitness trajectories produced by the uncorrelated fitness landscape are at
least qualitatively similar to the fitness trajectories observed in Richard Lenski’s long term
experiment in E. coli

13. However, the uncorrelated model makes very strong predictions about
the fitness e↵ects of mutations when they are transpanted to a di↵erent genetic background.
In particular, for all mutations but the first, the fitness e↵ect on the ancestral background is
distributed as p(s+X0). For X0 � �, the vast majority of these mutations will be strongly
deleterious.

The file...

Problem 7: LD of sweeping mutation

Problem 8: Drift barrier hypothesis for mutation rate evolution

The fact that the deterministic mutation-selection balance imposes a fitness load of order Ud sug-
gests that it might be beneficial for a well-adapted organism to lower its mutation rate as much as
possible. Consider an asexual population at mutation-selection balance with s � Ud, and suppose
that we engineer a new mutation repair pathway in this organism that lowers its mutation rate to
zero.

13
Wiser et al, Science 2013; Good and Desai Genetics 2015
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(a) If the engineered strain and the wildtype are introduced at a 50-50 ratio, what is the frequency
trajectory of the engineered lineage over time? Based on this result, would you conclude that
selection would a lower mutation rate in this organism?

(b) Suppose that the engineered strain takes over the population, but now loss-of-function muta-
tions in the engineered pathway restore the wildtype mutation rate. Calculate the probability
of observing the population in the optimized or non-optimized state if the mutation rates in
both directions are of order µ ! 0. How large must Ud before there is more than 90% chance
of observing the population in the optimized state? This is an example of the drift barrier
hypothesis, and it is one potential explanation for the fact that we don’t see mutation rates
that are closer to the limits imposed by physics.

(c) In practice, there are probably many more ways to break a biological pathway than there
are to restore it once it is broken. We can formalize this intuition in a model where there
are L potential sites that could result in a loss-of-function mutation, and these sites acquire
forward and backward mutations at rate µ. Repeat your calculation in part (b) to calculate
the probability of observing the population in the optimized vs one of the 2L�1 non-optimized
states. In the limit of large L, how low can Ud be before there is an appreciable probability
of losing the optimized pathway?

Problem 9: Time to the most recent common ancestor of the entire population

Suppose that we have a sample of size n from a neutral population. Calculate the mean and
variance of the time to the most recent common ancestor of the entire sample, assuming that n is
large. What value do we get when n is the size of the entire population?

Problem 10: Measuring the DFE of single gene knockouts

In Problem 5 of Problem Set 1, you worked out the mathematics of the pooled fitness assay. These
experiments are often performed in the context of large knockout screens. Several gene-editing
methods now exist for creating a pools of mutant strains, in which each strain has a particular
gene disrupted and replaced with a known sequence containing a random DNA barcode. By PCR
ampifiying and sequencing just the barcode region, this approach provides an easy and cost-e↵ective
way to track the frequencies of thousands of gene deletion mutants together in a single experiment.

The text file qian_etal_2012_deletion_fitnesses.txt contains results from one such exper-
iment in yeast.14 A library of ⇠4600 strains (each with a single gene deletion) was competed in
rich media for 26 generations and sequenced at the initial and final timepoints. The entire process
was then repeated again in a second biological replicate. The estimated fitnesses of each deletion
strain (relative to the ancestor) are listed in the text file for each biological replicate. We’ll write
these numbers as

ŝi,1 = si + ✏i,1 ,

ŝi,2 = si + ✏i,2 ,
(19)

where si is the “true” value and ✏i,j is a random error term with distribution p(✏). Without loss of

14
Qian et al (2012), “The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast,” Cell

Reports 2: 1399–1410.
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generality, we can rewrite these as an average and a di↵erence:

si ⌘
ŝi,1 + ŝi,2

2
,

�i ⌘ si,2 � si,1 .

(20)

(a) Suppose that the error distribution is symmetric around zero [p(✏) = p(�✏)]. Derive a rela-
tionship between the distribution of �i and the residual error around the average, ✏i ⌘ si�si.

(b) Using your result in (a), plot the number of genes you expect to see with |si| � s if all the
gene deletions were neutral (si = 0). Compare this to the observed number of genes with
|si| � s. What fraction of gene deletions have significant fitness e↵ects? and what are their
typical fitness e↵ects?

(c) Repeat part (b), this time focusing only on beneficial mutations (si � s). What fraction of
gene deletions are beneficial in this environment? What are their typical fitness e↵ects?

(d) In Problem 1 of Problem Set 2, we estimated the fraction of spontaneous mutations that
disrupt the function of a gene. If we assume that all beneficial mutations that occur in
laboratory evolution experiments are e↵ectively loss-of-function mutations, use your answer
from Problem 1 of Problem Set 2, along with your results in (c), to estimate the distribution
of fitness e↵ects of spontaneous beneficial mutations for yeast grown in this environment:

U⇢(s)ds ⌘ per generation rate of producing a mutation with fitness e↵ect s± ds (21)

We will consider a more direct way of measuring the DFE in a later problem.

APPHYS 237 Problem Set 4

DUE: 3/10/18

Problem 1: Measuring the DFE for de novo beneficial mutations

A common criticism of DFE estimates obtained from deletion screens (e.g. Problem 10 of Problem
Set 3) is that they only provide information about a narrow spectrum of mutations. One would
really like to estimate the fitness e↵ects of the beneficial mutations that actually occur in a given
environment. Levy, Blundell, and colleagues15 recently devised a clever method to do this in a high
throughput way, using a variation of the standard pooled fitness assay setup.

The basic idea is to start with a large pool of strains, each labeled with a unique DNA barcode.
This time, however, the barcodes are inserted in a common location in the genome, so that the
strains are initially neutral with respect to each other. After a few cycles of evolution, some fraction
of the lineages will acquire a beneficial mutation, and this can be detected by a sudden increase in
frequency of their respective barcode as measured by PCR amplification and sequencing. Although
the basic idea is simple, actually implementing this approach requires a careful integration between
theory and experiment, involving many of the theoretical concepts we have covered in this course.
We will work through the key steps in the analysis below.

15
Levy, Blundell, et al, , (2015), “Quantitative evolutionary dynamics using high-resolution lineage tracking,”

Nature 519:181–186.
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(a) The first step is to determine the parameters of the experiment. In particular, we get to
choose:

(a) The total number of generations that the lineages are monitored over, T .

(b) The total number of cells in the population at the serial transfer step, Nb.

(c) The total number of barcoded lineages, B.

(d) The total number of reads, D, to generate for each timepoint.

For the experiment to work as planned, we’ll need to choose these parameters so that the
following criteria are met:

(a) A substantial number of the barcoded lineages (e.g., ⇠ 1000) acquire a beneficial muta-
tion during the experiment.

(b) Beneficial mutations noticeably perturb the frequency of the lineage that they occur in
(so that we can actually observe them).

(c) Genetic drift does not substantially perturb the frequency of the lineages on the same
timescale (i.e., if we see a large change in frequency, we want to be able to attribute it
to selection rather than random genetic drift).

Of course, these criteria themselves depend on the fitness e↵ects and mutation rates of new
beneficial mutations – precisely what this experiment is trying to measure. Previous exper-
iments suggested laboratory evolution experiments in yeast16 were consistent with a typical
beneficial mutation rate of order Ub ⇠ 10�5 and a typical fitness e↵ect of order sb ⇠ 10�2.
Using these estimates, what values of T , Ne, and B would you suggest to your experimental
collaborators?

The file levy_blundell_etal_2015_barcode_trajectories.txt contains the raw read count tra-
jectories obtained from one such experiment. Half a million barcoded lineages were serially trans-
ferred in glucose limited media for 14 days, with bottleneck size of a 256-fold dilution rate (�t = 8
generations/day) and a bottleneck size of Nb ⇡ 7⇥ 108. We’ll denote the read count trajectory for
an arbitrary barcode i by Ri,t, and we’ll let Dt =

P
iRi denote the total sequencing coverage in

each timepoint. This defines a corresponding set of read count frequencies

f̂i,⌧ ⌘
Ri,⌧

D⌧
. (22)

Noise in these read count trajectories reflects both the stochastic growth dynamics of the experi-
ment, as well as noise in the data generation process (PCR amplification and sequencing). Levy,
Blundell, et al argued that this compound process is well approximated by an e↵ective branching
process model that connects the read count frequencies at successive sequenced timepoints. In
particular, given that we observe a lineage at frequency f̂i,⌧ , the conditional probability at the next

timepoint, p(f̂i,⌧+1|f̂i,⌧ ), can be approximated by a branching-process-like generating function:

H(z|f̂i,⌧ ) ⌘

Z
e
�zf

p(f |f̂i,⌧ ) df ⇡ exp

"
�
zf̂i,⌧ [1 + (Xi,⌧ �X⌧ )�t⌧ ]

1 + z⌧/D⌧

#
, (23)

where �t⌧ is the number of generations between the timepoints, Xi,⌧ is the fitness of lineage i at

timepoint ⌧ , X⌧ is the mean fitness of the population at that timepoint (X⌧ ⇡
P

iXi,⌧ f̂i,⌧ ), and

16
Desai et al Current Biology 2007
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⌧ is an e↵ective parameter capturing the net e↵ects of genetic drift and measurement noise. As
we noted in class, the inverse of this generating function has a convenient asymptotic expansion,

p(f̂i,⌧+1|f̂i,⌧ ) ⇠

h
(1 + (Xi,⌧ �X⌧ )�t⌧ )f̂i,⌧

i1/4

(4⇡⌧ )1/2f
3/4
i,⌧+1

exp

2

6664
�

✓q
f̂i,⌧+1 �

q
(1 + (Xi,⌧ �X⌧ )�t⌧ )f̂i,⌧

◆2

⌧

3

7775

(24)

which is valid for large Ri,⌧+1.

(b) We’ll first use the measured data to verify that Eq. 23 is a good approximation. Consider the
first timepoint (⌧ = 0), where few of the lineages will have any beneficial mutations, and we
can assume that Xi,⌧ ⇡ X⌧ ⇡ 0. Then consider the set of all lineages with exactly 50 reads in
the first timepoint – by construction, these should all have the same conditional distribution,
p(f̂i,1|f̂i,0). Use the observed frequencies of these lineages at the next timepoint (f̂i,1) to show
that the conditional distribution is consistent with the approximation in Eq. 23.

Hint: consider the empirical generating function, Ĥ(z) = 1
n

P
i exp

⇣
�zf̂i,1

⌘
, evaluated for

z near “typical” values of 1/f̂i,1. (Can you explain why this should be a robust moment to
estimate for a positive random variable in a finite sample?) Rearrange Eq. 23 as a linear
function of 1/z, so that you can use linear regression17 to estimate the slope and intercept.

(c) If we continue to focus on rare mutations (e.g,, 20  Ri,⌧  40), then the vast majority should
remain neutral even for ⌧ > 0. We can therefore use the statistics of these neutral lineages
to estimate ⌧ and X⌧ using the same approach you outlined in (b). Specifically, estimate a
separate value of ⌧ and X⌧ for lineages with Ri,⌧ = 20, . . . , 60, and average them together
to obtain a single estimate of ⌧ and X⌧ for each timepoint. Plot your estimated values as
a function of time. What is the estimated fold change in frequency of a neutral lineage over
the course of the experiment?

(d) We can now use the fitted values of ⌧ and X⌧ (measured for the bulk population) to scan for
outlier lineages that acquired a beneficial mutation. To do so, let’s imagine that a beneficial
mutation with e↵ect s occured in lineage i some timepoint t < t⌧ . The lineage frequency at
later timepoints can then be split into neutral and beneficial components,

f̂i,⌧ = f̂
0
i,⌧ + f̂

s
i,⌧ , (25)

where f̂
0
i,⌧ and f̂

s
i,⌧ are both described by Eq. 23 with Xi,⌧ = 0 and Xi,⌧ = s, respectively.

Derive an exprssion for the generating function of f̂i,⌧+1, conditioned on the values of f̂i,⌧ ,

f̂
0
i,⌧ , and f̂

s
i,⌧ . What is the e↵ective lineage fitness Xi,⌧?

Unfortunately, we don’t observe the sublineages f̂0
i,⌧ and f̂

s
i,⌧ directly, so we’ll have to estimate them

from the observed values of f̂i,⌧ . If the beneficial mutation establishes at time t0, its frequency at
later timepoints will be given by

f(t|s, t0) ⇡
c

Nbs
e

R t
t0
(s�X(t0))dt0

, (26)

17
E.g., using the linregress function in the SciPy stats package.
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where c is an O(1) constant that depends on the variance in o↵spring number in the experiment
(c ⇡ 1.8 here, see SI p. 11 in Levy, Blundell, et al 2012). We can therefore approximate

f̂
s
i,⌧ ⇡

8
><

>:

0 if t⌧ < t0

f(t⌧ |s, t0)/f̂i,⌧ if f(t⌧ |s, t0) < f̂i,⌧ ,

1 else.

(27)

This completely specifies the model. The probability of observing a given lineage trajectory, con-
ditioned on s and ⌧ , is given by

p({f̂i,⌧}|s, t0) ⇡ p(f̂i,0)
Y

⌧

p(f̂i,⌧+1|f̂i,⌧ , s, t0) . (28)

(e) Parameter estimation can be done with a standard Bayesian approach. Write a formal expres-
sion for the posterior probability, p(s, ⌧ |{fi,⌧+1}), relative to the posterior probability without

a beneficial mutation (t0 = 1). You may leave your answer as a function of p(f̂i,⌧+1|f̂i,⌧ , s, t0)
and the prior probabilities p0(s, ⌧). This ratio is known as the posterior odds ratio.

Numerically calculate the posterior odds ratio for trajectory 14 in the data file. For simplicity,
we’ll discretize (s, t0) values into a grid with spacing �t0 = 1 and �s = 0.005, and we’ll assume
a flat prior

p0(s, t0)

p0(t0 = 1)
⇡

(
cf0NbU

0
b s · �s · �t0 for 0  s  0.4 and �250  ⌧ < 100

0 else,
(29)

where f0 is the typical frequency of a lineage in the initial pool, and U
0
b ⇠ 10�5. For which

values of s and ⌧ is the posterior odds ratio the highest? Does this make sense given the
shape of the trajectory?

(f) Now use your approach in (e) to estimate (s, t0) values for all of the trajectories in the
experiment. Set t0 = 1 if the posterior odds ratio is less than one; otherwise take the values
of (s, ⌧) that maximize the posterior odds ratio. How many beneficial mutations do you
detect?

(g) Finally, we can use your detected beneficial mutations to estimate the distribution of fitness
e↵ects, Ub⇢(s). The number of beneficial mutations in an interval s ± �s that establish and
rise to detectable frequencies is given by

n(s) ⇡

"
Nb

Z t⇤(s)

0
e
�X(t)

dt

#
· Ub⇢(s)�s ·

s

c
(30)

where t
⇤ is the latest the mutation could establish and still perturb the frequency of the

lineage. Write an approximate expression for t
⇤(s), and then rearrange Eq. 30 to write

Ub⇢(s)�s as a function of the observed values n(s). Plot your estimated DFE using the
beneficial mutations you detected in (f).

Problem 2: Genealogies from sequences of neutral mutations

In class, we saw how we can use coalescent theory to go from genealogies to sequences of neutral
mutations. In this problem, we will consider how to go in the opposite direction. Suppose we draw
a sample of n = 6 individuals from a population and observe mutations at one or more sites. We’ll
consider a few di↵erent imaginary scenarios with S = 1, 2, and 3 variable sites.
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(a) A (b) AG (c) AG (d) AG (e) AGTG

A TC AG AG AGCG

A AG AC AC ACCG

T TC TC TC TCCA

T AG TC TC TCCG

T TC TC TG TCCA

(a) Draw two genealogies that are consistent with the mutation pattern in (a), assuming that
each mutation happens only once (µTc ⌧ 1).

(b) Repeat for pattern (b) above.

(c) Repeat for pattern (c) above.

(d) Try to repeat for pattern (d). Is it possible to draw a consistent genealogy where each mutation
happens only once? How is (d) di↵erent from (c) and (b), in terms of the number of distinct
haplotypes that are observed? (A version of this idea, known as the four gamete test is
frequently used to diagnose recombination or recurrent mutation events in DNA sequence
data.)

(e) Draw a genealogy that is consistent with the mutation pattern in (e).

Problem 3: Correlated evolution and protein-protein interactions

We previously saw how sequence conservation can signal functionally important regions of proteins
(or genomes). An extension of this idea is that slightly less constrained but correlated evolution
at di↵erent sites in a genome can signal interactions between the corresponding genomic regions.
In this problem, we will explore a classic example of correlated evolution in signal transduction
pathways.

In order to respond to changes in the environment, bacteria employ a family of proteins known as
the two-component signal transduction system. Each pathway in this family typically con-
tains a transmembrane protein known as the histidine-kinase (HK), which senses some condition
outside the cell, and a corresponding response regulator (RR), which can receive signals from
its partner HK and then go on to e↵ect changes in cellular physiology or behavior. These HK-RR
signaling systems are found throughout the bacterial kingdom, with most species containing 20 to
30 HK-RR pairs. However, there is little crosstalk between di↵erent HK-RR pairs, despite a large
degree of sequence similarity within the HK and RR families. This suggests that the sequences of
the HK and RR proteins are tuned to interact with their specific partner. In this problem, you will
use information theory to explore the molecular basis of this specificty.

The file skerker_etal_hk_alignment.txt contains a multiple alignment of the amino acid se-
quences of a portion of the HK protein across 1,297 di↵erent signaling pathways.18 Each row con-
tains the protein sequence of a di↵erent HK protein, and each column gives the amino-acid at that
position in the sequence (with gaps denoted by ‘-’). The files skerker_etal_rr_alignment_1.txt
and skerker_etal_rr_alignment_2.txt contain an analogous alignment for a portion of the RR
protein. One of the two files (we don’t know which) is sorted so that the each RR protein lines up
with its partner in hk_alignment.txt. The other file lists the RR proteins in a random order.

18
Data from Skerker et al (2008) “Rewiring the Specificity of Two-Component Signal Transduction Systems,” Cell

133, 1043–1054.
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(a) For each file, calculate the mutual information,

MI(ai, aj) = �

X

a,a0

Pr(ai = a, aj = a
0) log


Pr(ai = a, aj = a

0)

Pr(ai = a)Pr(aj = a0)

�
(31)

between each site i in the HK protein and each site j in the RR protein. Plot the distribution
of MI values for each file as a histogram. Based on this information, which file do you think
corresponds to the proper pairing of HK and RR proteins? Explain your reasoning.

(b) If you wanted to “rewire” an HK protein to interact with a di↵erent RR protein by switching a
single amino acid residue, which position would you want to mutate? Explain your reasoning.
(Amazingly, Skerker et al tried this and it actually worked!)

(c) Fitness valley crossing is often cited as a potential mechanism for creating the high mutual
information at the sites that control interaction specificity. The idea is that a deleterious
mutation that destablizes the interaction can be rescued by a compensatory mutation in
the interaction partner that restores the function of the interaction. Let’s try explore the
feasibility of this process using order-of-magnitude estimation. Consider a pair of sites. What
is the substitution rate of valley crossing mutations if the valley has a fitness cost sd, the
sequences on either side have the same fitness as the wildtype, and the mutation rate at both
sites is on the order of the per site mutation rate, µ. Substituting reasonable values for these
parameters, how many such mutations would you expect to see at a pair of sites in ⇠1000
gene families over the total number of generations that have elapsed since the origin of life
(⇠4 billion years ago). Compare this to the number of double mutations you see at your
informative site in part (b) above. Do you think this simple valley crossing explanation is
reasonable?

Problem 4: The e↵ective strength of genetic drift under background selection

In this problem, we will derive an e↵ective model for the frequency trajectory of a neutral mutation
in a genome with a large number of strongly deleterious sites. Suppose that we have an asexual
population at mutation-selection balance (Nse

�Ud/s � 1), and a neutral mutation arises in one of
the individuals in the population.

(a) What is the probability that the mutation arises in a genetic background with k deleterious
mutations?

The neutral mutation will found a new lineage, which will initially be described by a coupled
branching process,

@fk

@t
= [�sk � (�Ud)]fk + Udfk�1 � Udfk +

r
fk

N
⌘k(t) (32)

where fk is the frequency of individuals that have the focal neutral mutation and k deleterious
mutations, and the total frequency of the neutral mutation is f(t) =

P
k fk(t). The stochastic

dynamics of this process are rather complex19, but significant insights can be gained by dropping
the stochastic term and considering the deterministic limit.

19
For more information, see Cvijovic, Good, and Desai (Genetics, 2019).
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(b) Solve for the time-dependent values of fk(t), subject to the initial condition fk(0) = f0�k,k0 .
Hint: this is easiest to do by calculating the generating function G(z, t) =

P
k e

�zk
fk(t). Can

you recognize the result as a known distribution, except with a shift and an overall prefactor?

(c) Use your result in part (b) to calculate the total mutation frequency, f(t) =
P

k fk(t). [Hint:

this is very easy to do with the generating function, since G(0, t) =
P

k fk(t).] What do the
trajectories look like for k = 0 and k0 > 1, respectively? How quickly are the k0 > 1 lineages
purged from the population? What does the fk distribution look like at long times when
k0 = 0?

(d) We can gain some insight into the e↵ects of stochasticity with the following crude20 argument.
Suppose the neutral mutation arose in the k = 0 class, and is currently residing at a total
frequency f in the population. From your answer in part (c), we expect the frequencies fk to
look mutation-selection balance with an overall prefactor f . Now suppose that we suddenly
perturb each class by some small amount �fk. Based on your answer to parts (b) and (c), how
do the long-term values of fk(t) and f(t) depend on the �fk, and what is the characteristic
timescale ⌧relax over which these long-term values are attained?

(e) Your results in (d) suggest that, if we coarse-grain over timescales longer than ⌧relax, then
the population frequency f(t) should look like a mirrored version of the k0 class, which is
smaller by a factor of e�Ud/s. Use this result to write down a coarse-grained di↵usion model
for f(t) that is valid when f(t) ⌧ 1. What is the e↵ective population size? Is there a critical
frequency below which we expect the coarse-grained model to break down?

Problem 5: Measuring recombination rates using the decay of LD

Problem 6: Sexual vs asexual selection on a highly polygenic trait

Suppose that we create a population by crossing two diverged strains of yeast, and we evolve the
resulting hybrid o↵spring in an environment that selects for higher values of a particular trait.
We’ll assume that the fitness components of this phenotype are controlled by a large number L

of mutational di↵erences between the two strains, each contributing a small fitness e↵ect ±s. For
simplicity, we’ll assume that the positive and negative mutations are evenly distributed between
the two parents, and that the recombination rate is su�cinetly high that the di↵erent mutations
are assigned to o↵spring independently. Under these assumptions, the variance in fitness of the
o↵spring are normally distributed with mean 0 and variance V = Ls

2
/4. The goal of this problem

is to consider what happens in the so-called infinitesimal limit , where we let L ! 1 and
s ! 0 while keeping the variance V = Ls

2
/4 constant. (Formally, we can achieve this by setting

s =
p

V/L and thinking about an asymptotic expansion for large L.)

(a) Let’s first consider the case where we evolve the hybrid o↵spring asexually. For simplicity,
we’ll neglect the possibility of additional mutations in the o↵spring, so that we essentially
have a pooled fitness assay similar to Problem 5 of Problem Set 1. What is the initial rate of
fitness increase of the population (@tX)? What is the maximum fitness X⇤ that will typically
exist in a population founded by N0 hybrid o↵spring? (i.e., the maximum fitness that can be
achieved before we have to wait for additional mutations?)

(b) Now let’s imagine that the evolution step is performed with continual rounds of sexual re-
production, with a su�ciently high rate of recombination that the fitness-influencing sites

20
See Cvijovic et al (2019) for a more rigorous derivation.
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are e↵ectively unlinked (rij � �). How does the mean fitness of the population grow in this
scenario? How long do we have to wait before the population reaches the maximum value X⇤

that existed in the initial pool? How much do the frequencies of mutations change over this
timescale?

(c) Continuing with the scenario in (b), how long would we have to wait for the rate of adaptation
to decrease significantly from its initial value? How much fitness has been gained by this time?
How does this compare (at an order-of-magnitude level) to the maximum fitness that could
be created by reshu✏ing mutations in a pool of N0 hybrid o↵spring?
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