AP237/Bio251 Problem Set 4 Solutions

Written/compiled by: Benjamin Good and Anita Kulkarni
March 15, 2021

Problem 1: Measuring the DFE for de novo beneficial mutations,
Part 11

Part A
We would like to show that the MGF given in equation 20 is a good model of the data. At 7 =0,
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How do we find H? If we choose only the lineages with exactly 50 reads at 7 = 0, then R; o = 50, and we
can estimate H evaluating the empirical MGF at 7 = 1 (since all lineages with the same number of reads at

7 = 0 would be expected to have the same p(fi71|fi,o)), ie.
~ 1 ~
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evaluated for z at “typical” values of 1/ f,l
Now we calculate H as defined above. Actually, to make the numbers nicer, we (optionally) redefine
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so that 2’ should actually be chosen around typical values of 1/R; 1, and our new fitting equation as
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(this is how the (or one) sample code is written). Calculating H and fitting to typical values of 2/, we find
that a linear fit works very well, that ko ~ 10.01 (intercept), and that the fitted Dy/D; ~ 2.618 (slope)
comes quite close to the actual Dy/D; = 2.651. Thus, the MGF in equation 20 appears to be a good model
of the data (specifically, the conditional distribution is consistent with the approximation in equations 20
and 21).



Demonstrating Validity of Eqgs. 20 and 21
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Figure 1: Relation between —50/ logﬁ and 1/z; we see a strong linear relation, demonstrating the validity
of our MGF.

Part B

Since we assume that all lineages with R; » € [20, 60] remain neutral for all 7, let X; ; = 0 for all 7 for these
lineages. We have
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We can perform the same fitting procedure as in part a at all 7 (except the final one) with all lineages with
R; - € [20,60] using the same definition of H as in part a. If the inferred slope and intercept of a given fit
are m and b, respectively, then X, can be estimated as
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and k, can be estimated as

Ky =

Averaging these estimates for all fits performed at a given 7 and plotting them as a function of 7, we get
the following:
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Figure 2: Change in inferred x, over the course of the experiment.



Average Fitness vs. Time
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Figure 3: Change in inferred mean fitness over the course of the experiment.

Finally, we can estimate the fold change in frequency of a neutral lineage over the course of the experiment
by computationally carrying out the integral

ty e
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(derive this using f(t) = foexp ( fot (0 — X (¢))dt’ ) for a neutral lineage). Thus, on average, we would expect

to see the frequency of a neutral lineage drop by a factor of roughly 2.5 over the course of the experiment
(of course, this is very noisy).

Part C

We have that A . R
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where H;  (z) only depends on f9 and H;, (z) only depends on f#_. Plug in the expressions for H:
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Part D
Use Bayes’ theorem to come up with the following posterior odds ratio:
P(s,tol{fire1}) _ P{firt1}ls,to)P(s, to)

P(to = ool{fir+1})  P({firs1}to = 00)P(to = o)

Plots of trajectory 14 are shown below. Either of the following could have been interpreted as “trajectory
14” depending on whether 14 was taken to be the barcode ID or a 0-based coordinate.



Frequency of Lineage 14 (1-Based)
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Figure 4: Trajectory of lineage 14 (barcode ID 14).
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Figure 5: Trajectory of lineage 15 (barcode ID 15) or lineage 14 in 0-based coordinates.

The fitted version of lineage 14 in 0-based coordinates looks like:
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with a best fit selection coefficient of s ~ 10%.

Part E

The code below processed the first 1000 barcodes in ~3 seconds and found 96 beneficial barcodes. At this
rate, we estimate that it will take about a half hour to process the entire set of 5 x 10° barcodes.

Consistent with this estimate, running the full dataset took about 22 minutes to run and found ~12, 000
beneficial barcodes.

Part F

We want to find a t* such that by the end of the experiment (time ¢;), the frequency of a neutral lineage
would be of roughly the same order of magnitude as f(ty|s,t*):

Nibs exp Mtf (s — X(1) dt’] ~ foexp (— /Otf X(t’)dt’)

c tr tr__ tr __
= exp (/ sdt’) exp (— X(t')dt') = exp (— X(t’)dt')
JoNps t t 0

From part b, we know that the right hand side is approximately 0.4, which means that exp (f ftt,f X (t"dt! )

must be between 0.4 and 1. Since this is a rough order of magnitude calculation, removing a term of this
order will not significantly affect the final answer (provided that s isn’t too large, technically), so
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The formula for the DFE is given by
en(s)
Nys fot*(s) e~ Xt dt

Upp(s)ds ~

Applying this formula to the results from the full dataset, we obtain the following estimate of the DFE:
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Problem 2: Genealogies from sequences of neutral mutations

Note: there are lots of trees that are compatable with the sequences listed in parts (a-d) and part (f). Here
we’ve listed just one set of possibilities that work.

Part A

Assume A is ancestral and the red line indicates a mutation from A to T.

AN ATTT A £ 77h A
Figure 6: Genealogies for mutation pattern a.

Part B

Assume AG is ancestral, the red line denotes a mutation from A to T, and the blue line denotes a mutation
from G to C.
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Figure 7: Genealogies for mutation pattern b.

Part C

Once again, assume AG is ancestral, the red line denotes a mutation from A to T, and the blue line denotes

a mutation from G to C.
Ac Ac Ac Tc TCTC A6 Ae AC f¢ TC  TC

Figure 8: Genealogies for mutation pattern c.

Part D

There are 2 variable sites and 4 distinct haplotypes spread across 6 individuals, so there cannot be a consistent
genealogy where each mutation happens only once. To see this, consider the 6 unique binary trees for n = 6:
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Figure 9: Unique binary trees for n = 6.

A single mutation affecting exactly 3 organisms (here, either mutating A to T or G to C) would need
to happen where there is a (1,2), but we see that all instances of these necessitate that either the other
nucleotide is the same in all 3 first-site-mutant organisms, or there is exactly a 4/2 split in the frequencies
at the other site (of which the 2 must both have the same mutant first site), neither of which is true in our
scenario. So single mutations at each site cannot give rise to our scenario.



Part E

The diagram from part d helps us find the right tree architecture for this scenario (ancestral sequence is
AGTG).

sited T-(
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Figure 10: Genealogy for mutation pattern e.
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Sample code for Problem Set 3
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# Problem 1 of Problem Set 4

import pylab

import numpy

import sys

from math import exp

from scipy.stats import linregress

# Load Data from File
filename = "../data_files/levy_blundell_etal_2015_barcode_trajectories.txt"
file = open(filename,"r")
header = file.readline()
header_items = header.split(",")
ts = numpy.array([int(item.split("=")[1]) for item in header_items[1:]])
print("Loading trajectories...")
coverage_trajectories = []
for line in file:
items = line.split(",")
trajectory = [int(item) for item in items[1:]]
coverage_trajectories.append(trajectory)
coverage_trajectories = numpy.array(coverage_trajectories)
depths = coverage_trajectories.sum(axis=0)
frequency_trajectories = coverage_trajectoriesx*1.0/depths[None, :]
print ("Done!")
print ("Total coverage at each timepoint", depths)
print ("Frequency of $R=50: ", 50%1.0/depths[0])

# Set up some figures

pylab.figure(1)

# generating function for rare lineages (R0=40)
# df/dt = sxf + sqrt(c/Rtot*f)
pylab.xlabel(’x = 1/(z*£f0)’)

pylab.ylabel(’y = 1/log(1/H(z))’)

# Set up some figures

pylab.figure(2)
plotted_trajectory_example=False

# first trajectory with inferred fitness > 9Y%
pylab.xlabel(’Time (generations)’)
pylab.ylabel(’Lineage frequency’)

# Set up some figures

pylab.figure(3)

# DFE

pylab.xlabel(’Fitness effect, $s$’)
pylab.ylabel (°DFE, $U \\rho(s)$’)

# Infer kappas and mean fitnesses!

kappa_ts = []

mean_fitnesses = []

for drift_idx in range(0,len(ts)-1):
dt = ts[drift_idx+1]-ts[drift_idx]
winvs = []
kappas = []
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for RO in range(20,60):

good_
obser
expec
zs =
hs
ys
Xs
slope

idxs = (coverage_trajectories[:,drift_idx]==R0)

ved_coverages = (coverage_trajectories[:,drift_idx+1]) [good_idxs]

ted_coverage = RO*1.0/depths[drift_idx]*depths[drift_idx+1]
1.0/ (numpy.linspace(0.1,2)*expected_coverage)

numpy . exp (-zs [None, : ] *observed_coverages[:,None]) .mean(axis=0)
1.0/numpy.log(1.0/hs)

1.0/zs/expected_coverage

,intercept,dummy,dummy2,dummy3 = linregress(xs,ys)

if (drift_idx==0) and (R0==50):

#

p
p
p
p

winv

Plot the generating function!
ylab.figure(1)
ylab.plot(xs,ys,’k.’)
ylab.plot(xs,xs*slope+intercept)
ylab.x1im([0,2])
= slope

kappa = intercept*expected_coverage*winv

winvs

.append (winv)

kappas . append (kappa)

#print "kappa = ", kappa

kappas =

numpy . array (kappas)

winvs = numpy.array(winvs)

kappa_ts.

append (kappas.mean())

mean_fitnesses.append (numpy.log(winvs.mean())/dt)
kappa_ts = numpy.array (kappa_ts)

mean_fitnesse

s = numpy.array(mean_fitnesses)

# Other parameters
f0s = frequency_trajectories[:,0]

twoc = 3.5

Nb = 7e07

dt = 8

Ne = Nb*dt
dts = ts[1:]-
mean_fitness_
Ub0 = 1e-05
sb0 = 1le-1

ss = numpy.li
ds = ss[1]-ss
taus = numpy.
dtau = taus[1

# Prior from
#log_prior =

# Modified pr

#

beneficial_fs
# Don’t take
beneficial_fs
beneficial_fs
# Now go thro

ts[:-1]
Ws = numpy.exp(-numpy.cumsum(mean_fitnesses*dts))

nspace(0,0.4,80) [1:]
(0]

arange (-250,100)*1.0
J-taus[0]

original paper

(numpy . log(dtau/ (taus [-1]-taus[0])) ) *numpy.ones_like(taus) [None, : ]+ (numpy.log (UbO*ds/sb!

ior (flat prior in s, but taking account overall probability of producing a mutation)
log_prior = numpy.log(2/twoc*Ne*numpy.median(£0s)*(taus[-1]-taus[0])*Ub0*sb0)+(numpy.log(dtau/ (taus/[-

= twoc/2/Nexnumpy.exp(ss[None, : ,None]*ts[:,None,None] -ss [None, : ,None] *taus [None,None, :

last timepoint

= beneficial_fs[0:-1,:,:]

*= mean_fitness_Ws[:,None,None]
ugh and infer things per site

#plotted_example

16



107 beneficial_mutation_idxs (]
108 beneficial_mutation_ss =
100 beneficial_mutation_taus
110 import time

111 start_time = time.time()
112 #desired_idxs = numpy.arange(0,1000)

113 desired_idxs = numpy.arange(0,coverage_trajectories.shape[0])

114 for i in desired_idxs:

]

e

(

115 freqs = frequency_trajectories[i,0:-1]

116 safe_freqs = (freqs+(freqs==0))

117 beneficial_subfreqs = numpy.clip(beneficial_fs/safe_freqsl[:,None,None],0,1)
118 # Calculate effective s as a function of tau

1190 effective_ss = ss[None,:,None]*beneficial_subfreqs-(mean_fitnesses) [:,None,None]
120 effective_Ws = numpy.exp(effective_ss*dts[:,None,None])

121 neutral_expected_reads = freqs*depths[1:]

122 selected_expected_reads = neutral_expected_reads[:,None,None]*effective_Ws
123 sqrt_neutral_expected_reads = numpy.sqrt(neutral_expected_reads)

124 sqrt_selected_expected_reads = numpy.sqrt(selected_expected_reads)

125 sqrt_observed_reads = numpy.sqrt(coverage_trajectories([i,1:]*1.0)

126 log_likelihood = 1/4*numpy.log(effective_Ws).sum(axis=0)

127 log_likelihood += -(numpy.square(sqrt_selected_expected_reads-sqrt_observed_reads[:,None,None]) /1]
128 log_likelihood += +(numpy.square(sqrt_neutral_expected_reads-sqrt_observed_reads)/kappa_ts).sum(.
129 log_bayes_factor = log_prior + log_likelihood

130 max_b = log_bayes_factor.max()

131 if max_b < O:

132 continue

133 max_idxs = (log_bayes_factor==max_b)

134 max_ss = (ss[:,None]*numpy.ones_like(taus) [None, :]) [max_idxs]

135 max_taus = (taus[None, :]*numpy.ones_like(ss) [:,None]) [max_idxs]

136 s = max_ss[0]

137 tau = max_taus[0]

138 beneficial_mutation_idxs.append(i)

139 beneficial_mutation_ss.append(s)

140 beneficial_mutation_taus.append(tau)

141 if 1 in [14,15]:

142 print "Estimated fitness", s, "for lineage", i, "(O-based)"

143 if s>0.08 and not plotted_trajectory_example:

144 print("Plotting example:", i, s, tau, max_b)

145 # Try to plot it

146 fs = frequency_trajectories[i,:]

147 ff = fs [—1]

148 # build it from reverse

149 reversed_fitted_fs = [ff]

150 for t in reversed(range(0,len(dts))):

151 f = reversed_fitted_fs[-1]*exp(mean_fitnesses[t]*dts[t]-s*dts[t])
152 reversed_fitted_fs.append(f)

153 fitted_fs = numpy.array(reversed_fitted_fs) [::-1]

154 pylab.figure(2)

155 pylab.plot(ts,fs,’k.’)

156 pylab.semilogy(ts,fitted_fs,’-’)

157 #pylab.ylim(1,1e08)

158 pylab.ylim(1e-08,1)

159 plotted_trajectory_example=True

160 print("Done!")
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print ("Found", len(beneficial_mutation_idxs), "beneficial mutations out of", i, "(%d total)" % cover:
end_time = time.time()

print ("Took", end_time-start_time, "seconds to run")

# Calculate contribution for each omne:

print("Calculating DFE")
mus = []
for s in ss:
tmaxs = numpy.log(f0s*2*Ne*s/twoc)/s
mutation_weight = Ne*2xs/twoc*(f0s[desired_idxs,None]*(mean_fitness_Ws*dts) [None, :]*(ts[None,1:]:
if mutation_weight ==
mus . append (-1)
else:
num_mutations = (beneficial_mutation_ss==s).sum()
mus . append (num_mutations/mutation_weight)
mus = numpy.array (mus)
pylab.figure(3)
pylab.plot(ss[mus>0] ,mus [mus>0],’k.-’)
# Problem set output
pylab.figure(1)
pylab.savefig(’levy_blundell_figl.pdf’,bbox_inches=’tight’)
pylab.figure(2)
pylab.savefig(’levy_blundell_fig2.pdf’,bbox_inches=’tight’)
pylab.figure(3)
pylab.savefig(’levy_blundell_fig3.pdf’,bbox_inches=’tight’)
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