AP237/Bio251 Problem Set 4 Solutions

Written/compiled by: Benjamin Good and Anita Kulkarni March 15, 2021

Problem 1: Measuring the DFE for de novo beneficial mutations, Part II

Part A

We would like to show that the MGF given in equation 20 is a good model of the data. At $\tau = 0$,

$$H(z|\hat{f}_{i,0}) \approx \exp\left[-\frac{z\hat{f}_{i,0}[1 + (X_{i,0} - \overline{X}_0)\Delta t_0]}{1 + z\kappa_0/D_0}\right] = \exp\left(-\frac{z\hat{f}_{i,0}}{1 + z\kappa_0/D_0}\right)$$

$$\implies -\log H = \frac{z\hat{f}_{i,0}}{1 + z\kappa_0/D_0} \implies -\frac{1}{\log H} = \frac{1}{z\hat{f}_{i,0}} + \frac{\kappa_0}{D_0\hat{f}_{i,0}} = \frac{D_0}{zR_{i,0}} + \frac{D_0\kappa_0}{D_0R_{i,0}} \implies -\frac{R_{i,0}}{\log H} = \frac{D_0}{z} + \kappa_0$$

How do we find H? If we choose only the lineages with exactly 50 reads at $\tau = 0$, then $R_{i,0} = 50$, and we can estimate H evaluating the empirical MGF at $\tau = 1$ (since all lineages with the same number of reads at $\tau = 0$ would be expected to have the same $p(\hat{f}_{i,1}|\hat{f}_{i,0})$), i.e.

$$\hat{H}(z) = \frac{1}{n} \sum_{i} \exp\left(-z\hat{f}_{i,1}\right)$$

evaluated for z at "typical" values of $1/\hat{f}_{i,1}$.

Now we calculate \hat{H} as defined above. Actually, to make the numbers nicer, we (optionally) redefine

$$\hat{H}(z') = \frac{1}{n} \sum_{i} \exp(-z' R_{i,1})$$

so that z' should actually be chosen around typical values of $1/R_{i,1}$, and our new fitting equation as

$$-\frac{50}{\log H} = \frac{D_0}{D_1} \frac{1}{z'} + \kappa_0$$

(this is how the (or one) sample code is written). Calculating \hat{H} and fitting to typical values of z', we find that a linear fit works very well, that $\kappa_0 \approx 10.01$ (intercept), and that the fitted $D_0/D_1 \approx 2.618$ (slope) comes quite close to the actual $D_0/D_1 \approx 2.651$. Thus, the MGF in equation 20 appears to be a good model of the data (specifically, the conditional distribution is consistent with the approximation in equations 20 and 21).

Figure 1: Relation between $-50/\log \hat{H}$ and 1/z; we see a strong linear relation, demonstrating the validity of our MGF.

Part B

Since we assume that all lineages with $R_{i,\tau} \in [20,60]$ remain neutral for all τ , let $X_{i,\tau} = 0$ for all τ for these lineages. We have

$$-\log H = \frac{z\frac{R_{i,\tau}}{D_{\tau}}\left(1 - \overline{X}_{\tau}\Delta t_{\tau}\right)}{1 + z\frac{\kappa_{\tau}}{D_{\tau}}} = \frac{zR_{i,\tau}\left(1 - \overline{X}_{\tau}\Delta t_{\tau}\right)}{D_{\tau} + z\kappa_{\tau}} \implies -\frac{R_{i,\tau}}{\log H} = \frac{1}{z}\frac{D_{\tau}}{1 - \overline{X}_{\tau}\Delta t_{\tau}} + \frac{\kappa_{\tau}}{1 - \overline{X}_{\tau}\Delta t_{\tau}}$$

We can perform the same fitting procedure as in part a at all τ (except the final one) with all lineages with $R_{i,\tau} \in [20,60]$ using the same definition of \hat{H} as in part a. If the inferred slope and intercept of a given fit are m and b, respectively, then \overline{X}_{τ} can be estimated as

$$\overline{X}_{\tau} = \frac{1}{\Delta t_{\tau}} \left(1 - \frac{D_{\tau}}{m} \right)$$

and κ_{τ} can be estimated as

$$\kappa_{\tau} = \frac{D_{\tau}b}{m}$$

Averaging these estimates for all fits performed at a given τ and plotting them as a function of τ , we get the following:

Figure 2: Change in inferred κ_{τ} over the course of the experiment.

Figure 3: Change in inferred mean fitness over the course of the experiment.

Finally, we can estimate the fold change in frequency of a neutral lineage over the course of the experiment by computationally carrying out the integral

$$\exp\left(-\int_0^{t_f} \overline{X}(t')dt'\right) \approx 0.4$$

(derive this using $f(t) = f_0 \exp\left(\int_0^t (0 - \overline{X}(t'))dt'\right)$ for a neutral lineage). Thus, on average, we would expect to see the frequency of a neutral lineage drop by a factor of roughly 2.5 over the course of the experiment (of course, this is very noisy).

Part C

We have that

$$H(z|\hat{f}_{i,\tau}) = H(z|(\hat{f}_{i,\tau}^0 + \hat{f}_{i,\tau}^s)) = H_{\hat{f}_{i,\tau+1}^0}(z)H_{\hat{f}_{i,\tau+1}^s}(z)$$

where $H_{\hat{f}_{i,\tau+1}^0}(z)$ only depends on $\hat{f}_{i,\tau}^0$ and $H_{\hat{f}_{i,\tau+1}^s}(z)$ only depends on $\hat{f}_{i,\tau}^s$. Plug in the expressions for H:

$$H(z|\hat{f}_{i,\tau}) = \exp\left[-\frac{z\hat{f}_{i,\tau}^{0}(1 - \overline{X}_{\tau}\Delta t_{\tau})}{1 + z\kappa_{\tau}/D_{\tau}}\right] \exp\left[-\frac{z\hat{f}_{i,\tau}^{s}\left[1 + (s - \overline{X}_{\tau})\Delta t_{\tau}\right]}{1 + z\kappa_{\tau}/D_{\tau}}\right]$$

$$= \exp\left[-\frac{z\left[\hat{f}_{i,\tau}^{0} - \hat{f}_{i,\tau}^{0}\overline{X}_{\tau}\Delta t_{\tau} + \hat{f}_{i,\tau}^{s} + \hat{f}_{i,\tau}^{s}s\Delta t_{\tau} - \hat{f}_{i,\tau}^{s}\overline{X}_{\tau}\Delta t_{\tau}\right]}{1 + z\kappa_{\tau}/D_{\tau}}\right]$$

$$= \exp\left[-\frac{z\hat{f}_{i,\tau}\left[1 + \left(s\left(\hat{f}_{i,\tau}^{s}/\hat{f}_{i,\tau}\right) - \overline{X}_{\tau}\right)\Delta t_{\tau}\right]}{1 + z\kappa_{\tau}/D_{\tau}}\right] \implies X_{i,\tau,\text{eff}} = s\frac{\hat{f}_{i,\tau}^{s}}{\hat{f}_{i,\tau}}$$

Part D

Use Bayes' theorem to come up with the following posterior odds ratio:

$$\frac{P(s,t_0|\{\hat{f}_{i,\tau+1}\})}{P(t_0=\infty|\{\hat{f}_{i,\tau+1}\})} = \frac{P(\{\hat{f}_{i,\tau+1}\}|s,t_0)P(s,t_0)}{P(\{\hat{f}_{i,\tau+1}\}|t_0=\infty)P(t_0=\infty)}$$

Plots of trajectory 14 are shown below. Either of the following could have been interpreted as "trajectory 14" depending on whether 14 was taken to be the barcode ID or a 0-based coordinate.

Figure 4: Trajectory of lineage 14 (barcode ID 14).

Figure 5: Trajectory of lineage 15 (barcode ID 15) or lineage 14 in 0-based coordinates.

The fitted version of lineage 14 in 0-based coordinates looks like:

with a best fit selection coefficient of $s \approx 10\%$.

Part E

The code below processed the first 1000 barcodes in \sim 3 seconds and found 96 beneficial barcodes. At this rate, we estimate that it will take about a half hour to process the entire set of 5×10^5 barcodes.

Consistent with this estimate, running the full dataset took about 22 minutes to run and found \sim 12,000 beneficial barcodes.

Part F

We want to find a t^* such that by the end of the experiment (time t_f), the frequency of a neutral lineage would be of roughly the same order of magnitude as $f(t_f|s,t^*)$:

$$\frac{c}{N_b s} \exp\left[\int_{t^*}^{t_f} \left(s - \overline{X}(t')\right) dt'\right] \approx f_0 \exp\left(-\int_0^{t_f} \overline{X}(t') dt'\right)$$

$$\implies \frac{c}{f_0 N_b s} \exp\left(\int_{t^*}^{t_f} s dt'\right) \exp\left(-\int_{t^*}^{t_f} \overline{X}(t') dt'\right) = \exp\left(-\int_0^{t_f} \overline{X}(t') dt'\right)$$

From part b, we know that the right hand side is approximately 0.4, which means that $\exp\left(-\int_{t^*}^{t_f} \overline{X}(t')dt'\right)$ must be between 0.4 and 1. Since this is a rough order of magnitude calculation, removing a term of this order will not significantly affect the final answer (provided that s isn't too large, technically), so

$$s(t_f - t^*) = \log\left(\frac{0.4f_0 N_b s}{c}\right) \approx \log\left(\frac{f_0 N_b s}{c}\right) \implies t^* \approx t_f - \frac{1}{s}\log\left(\frac{f_0 N_b s}{c}\right)$$

The formula for the DFE is given by

$$U_b \rho(s) \delta s \approx \frac{cn(s)}{N_b s \int_0^{t^*(s)} e^{-\overline{X}(t)} dt}$$

Applying this formula to the results from the full dataset, we obtain the following estimate of the DFE:

Problem 2: Genealogies from sequences of neutral mutations

Note: there are lots of trees that are compatable with the sequences listed in parts (a-d) and part (f). Here we've listed just one set of possibilities that work.

Part A

Assume A is ancestral and the red line indicates a mutation from A to T.

Figure 6: Genealogies for mutation pattern a.

Part B

Assume AG is ancestral, the red line denotes a mutation from A to T, and the blue line denotes a mutation from G to C.

Figure 7: Genealogies for mutation pattern b.

Part C

Once again, assume AG is ancestral, the red line denotes a mutation from A to T, and the blue line denotes a mutation from G to C.

Figure 8: Genealogies for mutation pattern c.

Part D

There are 2 variable sites and 4 distinct haplotypes spread across 6 individuals, so there cannot be a consistent genealogy where each mutation happens only once. To see this, consider the 6 unique binary trees for n = 6:

Figure 9: Unique binary trees for n = 6.

A single mutation affecting exactly 3 organisms (here, either mutating A to T or G to C) would need to happen where there is a (1,2), but we see that all instances of these necessitate that either the other nucleotide is the same in all 3 first-site-mutant organisms, or there is exactly a 4/2 split in the frequencies at the other site (of which the 2 must both have the same mutant first site), neither of which is true in our scenario. So single mutations at each site cannot give rise to our scenario.

Part E

The diagram from part d helps us find the right tree architecture for this scenario (ancestral sequence is AGTG).

Figure 10: Genealogy for mutation pattern e.

Problem 3

(a) There are two different ways we can do this part:

Method 1: In Problem 5 of PSET 1, we showed that a collection of No Strains m/ fitnesses X; evolve under selection as

$$F_{i}(t) = \frac{e^{X_{i}t}}{\sum_{j=1}^{n} e^{X_{j}t}}$$

the mean filtress of the population is therefore given by:

$$\overline{X}(t) = \sum_{i=1}^{N} X_i f_i(t) = \sum_{i=1}^{N} X_i e^{X_i t}$$

$$\overline{\sum_{j=1}^{N} e^{X_i t}}$$

taking desirahus, or find that:

$$\partial_{t} X(t) \Big|_{t=0} = \left(\frac{\sum_{j=1}^{N_{t}} x_{i}^{2} e^{x_{i}t}}{\sum_{j=1}^{N_{t}} e^{x_{j}t}} - \frac{\sum_{j=1}^{N_{t}} x_{i}^{2} e^{x_{j}t}}{\left(\sum_{j=1}^{N_{t}} e^{x_{j}t}\right)^{2}} \right) \Big|_{t=0}$$

$$= \frac{1}{N_o} \sum_{i=1}^{N_o} X_i^2 - \left(\frac{1}{N_o} \sum_{i=1}^{N_o} X_i^2\right)^2$$

$$= \int X^2 f(x) dx - \left(\int X f(x) dx\right)^2$$

where f(x) ~ Gaussian (0, V) is the filtress distribution of the hybrid offspring.

This shows that
$$\partial_{+} \overline{X}|_{+=0} = V$$

Method 2: we can do the same thing directly from our multi-locus SDE model w/o multitum o recombination:

$$= \left\langle \sum_{\vec{g}} X(\vec{s})^2 f(\vec{s}) \right\rangle - \left\langle \left(\sum_{\vec{g}} X(\vec{s}) f(\vec{s})\right)^2 \right\rangle + 0 + 0$$

$$\emptyset +=0 \implies f(\vec{s},0) = \sum_{i=1}^{N_0} \frac{1}{N_0} \delta \vec{g}_i \vec{s}_i$$
where \vec{g}_i is the gendral of the ith hybrid famely.

Thur,
$$\left\langle \frac{\partial \tilde{X}(t)}{\partial t} \right|_{t=0} > = \frac{1}{N_0} \sum_{i=1}^{N_i} X_i^2 - \left(\frac{1}{N_0} \sum_{i=1}^{N_0} X_i \right)^2$$

 $= \int X^2 f(x) dx - \left(\int X f(x) dx \right)^2$
 $= V$ as above.

(b) Each of the No famely lineages establishes w/ probability -2x;.
Thus, the expected # of established lineages w/ filmss >> x*
is given by

$$n_{>}(x^{*}) = N_{o} \int_{X^{*}}^{\infty} 2x f(x) dx = \int_{X^{*}}^{\infty} 2x \int_{\sqrt{\pi} N}^{\infty} e^{-\frac{x^{2}}{2\nu}} dx$$

$$= \frac{2N_{o}V}{\sqrt{\pi}N_{o}} e^{-\frac{x^{2}}{2\nu}} \Big|_{X^{*}}^{\infty} = N_{o}\sqrt{V} \int_{\pi}^{\infty} e^{-\frac{x^{2}}{2\nu}} dx$$

The typical maximum fibress will occur when $n_2(x_{max}) \sim 1$. Solving for x_{max} , we obtain:

(C) If recombination is high enough that sites evolve independently, than the frequency of the + allele @ the eth site is satisfies the single lows equation:

$$\frac{df_{\ell}}{dt} = 5f_{\ell}(1-f_{\ell}) + \sqrt{f_{\ell}(1-f_{\ell})} \eta(t) \approx 5f_{\ell}(1-f_{\ell})$$

where we have assumed that N 13 sublicitatly large that individual founder larges do not change much on our experimental timescales (Not ex 1). The solution is our familiar logistic function,

$$f_{\ell}(t) = \frac{f_{\ell}(t)e^{st}}{|tf_{\ell}(t)(e^{st}-1)|} = \frac{e^{st}}{|t-e^{st}|}$$
 (since $f_{\ell}(t) \approx \frac{1}{2}$)

the mean filtress then grows as

$$\widetilde{X}(+) = \sum_{\ell=1}^{L} \frac{5}{2} f_{\ell}(+) + (-\frac{5}{2})(-\frac{5}{2}) = \sum_{\ell=1}^{L} (5f_{\ell}(+) - \frac{5}{2})$$

$$= \frac{Ls}{2} \left(\frac{2e^{st}}{1+e^{st}} - 1 \right) = \frac{Ls}{2} \cdot \frac{e^{st}}{e^{st}+1}$$

=
$$V \cdot \frac{2}{5} \cdot \frac{e^{5t}-1}{e^{5t}+1}$$
 which matches part (a) when $t=0$.

The mean fitness will reach Xnox from part (b) when

$$\widetilde{X}(+) = V \cdot \frac{2}{5} \cdot \frac{e^{\frac{1}{5}}}{e^{\frac{1}{5}}} = X_{max} \approx \sqrt{2V} \log^{\frac{1}{5}} (N_0 \sqrt{V})$$

Since we have assumed 5-70 + L-700 m/V held fixed, we can Taylor expand the exponentials in X(t), leaving

or
$$\int + = \int \frac{7}{V} \log^{1/2} (NoVV)$$

Since this expression is finite as 5+0+ L+00, we will always have steel on this tirescale, and

$$f_e(t) \approx \frac{1}{2} + O(st)$$
 (i.e. allely freqs have barely changed)

this implies that the rate of adaptation is still $\frac{d\hat{X}^{(4)}}{d\hat{I}} = V$, when the corresponding value for assaul populations starts to decline significantly.

Sample code for Problem Set 3

```
1 # Problem 1 of Problem Set 4
3 import pylab
4 import numpy
5 import sys
6 from math import exp
7 from scipy.stats import linregress
9 # Load Data from File
10 filename = "../data_files/levy_blundell_etal_2015_barcode_trajectories.txt"
file = open(filename, "r")
12 header = file.readline()
header_items = header.split(",")
14 ts = numpy.array([int(item.split("=")[1]) for item in header_items[1:]])
print("Loading trajectories...")
16 coverage_trajectories = []
17 for line in file:
      items = line.split(",")
      trajectory = [int(item) for item in items[1:]]
19
      coverage_trajectories.append(trajectory)
21 coverage_trajectories = numpy.array(coverage_trajectories)
22 depths = coverage_trajectories.sum(axis=0)
23 frequency_trajectories = coverage_trajectories*1.0/depths[None,:]
print("Done!")
25 print("Total coverage at each timepoint", depths)
26 print("Frequency of $R=50: ", 50*1.0/depths[0])
28 # Set up some figures
29 pylab.figure(1)
30 # generating function for rare lineages (RO=40)
31 # df/dt = s*f + sqrt(c/Rtot*f)
_{32} pylab.xlabel('x = 1/(z*f0)')
33 pylab.ylabel('y = 1/\log(1/H(z))')
34 # Set up some figures
35 pylab.figure(2)
36 plotted_trajectory_example=False
37 # first trajectory with inferred fitness > 9%
38 pylab.xlabel('Time (generations)')
39 pylab.ylabel('Lineage frequency')
40 # Set up some figures
41 pylab.figure(3)
42 # DFE
43 pylab.xlabel('Fitness effect, $s$')
44 pylab.ylabel('DFE, $U \\rho(s)$')
46 # Infer kappas and mean fitnesses!
47 kappa_ts = []
48 mean_fitnesses = []
49 for drift_idx in range(0,len(ts)-1):
      dt = ts[drift_idx+1]-ts[drift_idx]
      winvs = []
51
      kappas = []
```

```
for R0 in range(20,60):
 53
                      good_idxs = (coverage_trajectories[:,drift_idx]==R0)
 54
                      observed_coverages = (coverage_trajectories[:,drift_idx+1])[good_idxs]
 55
                      expected_coverage = R0*1.0/depths[drift_idx]*depths[drift_idx+1]
                      zs = 1.0/(numpy.linspace(0.1,2)*expected_coverage)
 57
                      hs = numpy.exp(-zs[None,:]*observed_coverages[:,None]).mean(axis=0)
                      ys = 1.0/numpy.log(1.0/hs)
 59
                      xs = 1.0/zs/expected_coverage
                      slope,intercept,dummy,dummy2,dummy3 = linregress(xs,ys)
 61
                      if (drift_idx==0) and (R0==50):
                              # Plot the generating function!
                              pylab.figure(1)
 64
                              pylab.plot(xs,ys,'k.')
 65
                              pylab.plot(xs,xs*slope+intercept)
 66
                              pylab.xlim([0,2])
                      winv = slope
 68
                      kappa = intercept*expected_coverage*winv
                      winvs.append(winv)
 70
                      kappas.append(kappa)
                      #print "kappa = ", kappa
 72
              kappas = numpy.array(kappas)
 73
              winvs = numpy.array(winvs)
 74
              kappa_ts.append(kappas.mean())
              mean_fitnesses.append(numpy.log(winvs.mean())/dt)
 77 kappa_ts = numpy.array(kappa_ts)
 78 mean_fitnesses = numpy.array(mean_fitnesses)
 79 # Other parameters
 80 f0s = frequency_trajectories[:,0]
 81 \text{ twoc} = 3.5
 82 \text{ Nb} = 7e07
 83 dt = 8
 84 Ne = Nb*dt
 85 dts = ts[1:]-ts[:-1]
 86 mean_fitness_Ws = numpy.exp(-numpy.cumsum(mean_fitnesses*dts))
 87 Ub0 = 1e-05
 88 \text{ sb0} = 1e-1
s_9 ss = numpy.linspace(0,0.4,80)[1:]
 _{90} ds = ss[1]-ss[0]
91 \text{ taus} = \text{numpy.arange}(-250,100)*1.0
 92 dtau = taus[1]-taus[0]
94 # Prior from original paper
95 #log_prior = (numpy.log(dtau/(taus[-1]-taus[0])))*numpy.ones_like(taus)[None,:]+(numpy.log(Ub0*ds/sb0
 97 # Modified prior (flat prior in s, but taking account overall probability of producing a mutation)
     log_prior = numpy.log(2/twoc*Ne*numpy.median(f0s)*(taus[-1]-taus[0])*Ub0*sb0)+(numpy.log(dtau/(taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1]-taus[-1
99
100
101 beneficial_fs = twoc/2/Ne*numpy.exp(ss[None,:,None]*ts[:,None,None]-ss[None,:,None]*taus[None,None,:
102 # Don't take last timepoint
beneficial_fs = beneficial_fs[0:-1,:,:]
beneficial_fs *= mean_fitness_Ws[:,None,None]
105 # Now go through and infer things per site
106 #plotted_example
```

```
107 beneficial_mutation_idxs = []
  beneficial_mutation_ss = []
109 beneficial_mutation_taus = []
110 import time
111 start_time = time.time()
#desired_idxs = numpy.arange(0,1000)
desired_idxs = numpy.arange(0,coverage_trajectories.shape[0])
   for i in desired_idxs:
       freqs = frequency_trajectories[i,0:-1]
115
       safe_freqs = (freqs+(freqs==0))
116
       beneficial_subfreqs = numpy.clip(beneficial_fs/safe_freqs[:,None,None],0,1)
117
       # Calculate effective s as a function of tau
118
       effective_ss = ss[None,:,None]*beneficial_subfreqs-(mean_fitnesses)[:,None,None]
119
       effective_Ws = numpy.exp(effective_ss*dts[:,None,None])
120
       neutral_expected_reads = freqs*depths[1:]
121
       selected_expected_reads = neutral_expected_reads[:,None,None]*effective_Ws
122
       sqrt_neutral_expected_reads = numpy.sqrt(neutral_expected_reads)
123
       sqrt_selected_expected_reads = numpy.sqrt(selected_expected_reads)
124
       sqrt_observed_reads = numpy.sqrt(coverage_trajectories[i,1:]*1.0)
125
       log_likelihood = 1/4*numpy.log(effective_Ws).sum(axis=0)
126
       log_likelihood += -(numpy.square(sqrt_selected_expected_reads-sqrt_observed_reads[:,None,None])/
127
       log_likelihood += +(numpy.square(sqrt_neutral_expected_reads-sqrt_observed_reads)/kappa_ts).sum(
128
       log_bayes_factor = log_prior + log_likelihood
       max_b = log_bayes_factor.max()
130
       if max_b < 0:</pre>
131
           continue
132
       max_idxs = (log_bayes_factor==max_b)
133
       max_ss = (ss[:,None]*numpy.ones_like(taus)[None,:])[max_idxs]
134
       max_taus = (taus[None,:]*numpy.ones_like(ss)[:,None])[max_idxs]
135
       s = max_ss[0]
136
       tau = max_taus[0]
137
       beneficial_mutation_idxs.append(i)
138
       beneficial_mutation_ss.append(s)
139
       beneficial_mutation_taus.append(tau)
       if i in [14,15]:
141
           print "Estimated fitness", s, "for lineage", i, "(0-based)"
142
       if s>0.08 and not plotted_trajectory_example:
143
           print("Plotting example:", i, s, tau, max_b)
           # Try to plot it
145
           fs = frequency_trajectories[i,:]
           ff = fs[-1]
147
           # build it from reverse
           reversed_fitted_fs = [ff]
149
           for t in reversed(range(0,len(dts))):
150
               f = reversed_fitted_fs[-1]*exp(mean_fitnesses[t]*dts[t]-s*dts[t])
151
               reversed_fitted_fs.append(f)
152
           fitted_fs = numpy.array(reversed_fitted_fs)[::-1]
153
           pylab.figure(2)
154
           pylab.plot(ts,fs,'k.')
155
           pylab.semilogy(ts,fitted_fs,'-')
156
           #pylab.ylim(1,1e08)
157
           pylab.ylim(1e-08,1)
158
           plotted_trajectory_example=True
160 print("Done!")
```

```
161 print("Found", len(beneficial_mutation_idxs), "beneficial mutations out of", i, "(%d total)" % covers
162 end_time = time.time()
163 print("Took", end_time-start_time, "seconds to run")
164 # Calculate contribution for each one:
166 print("Calculating DFE")
_{167} mus = \square
168 for s in ss:
       tmaxs = numpy.log(f0s*2*Ne*s/twoc)/s
       mutation_weight = Ne*2*s/twoc*(f0s[desired_idxs,None]*(mean_fitness_Ws*dts)[None,:]*(ts[None,1:]
       if mutation_weight == 0:
171
           mus.append(-1)
172
      else:
173
           num_mutations = (beneficial_mutation_ss==s).sum()
174
           mus.append(num_mutations/mutation_weight)
176 mus = numpy.array(mus)
177 pylab.figure(3)
178 pylab.plot(ss[mus>0],mus[mus>0],'k.-')
179 # Problem set output
180 pylab.figure(1)
181 pylab.savefig('levy_blundell_fig1.pdf',bbox_inches='tight')
182 pylab.figure(2)
pylab.savefig('levy_blundell_fig2.pdf',bbox_inches='tight')
184 pylab.figure(3)
pylab.savefig('levy_blundell_fig3.pdf',bbox_inches='tight')
```