
AP237/Bio251 Problem Set 4 Solutions

Written/compiled by: Benjamin Good and Anita Kulkarni

March 15, 2021

Problem 1: Measuring the DFE for de novo beneficial mutations,
Part II

Part A

We would like to show that the MGF given in equation 20 is a good model of the data. At τ = 0,

H(z|f̂i,0) ≈ exp

[
−zf̂i,0[1 + (Xi,0 −X0)∆t0]

1 + zκ0/D0

]
= exp

(
− zf̂i,0

1 + zκ0/D0

)

=⇒ − logH =
zf̂i,0

1 + zκ0/D0
=⇒ − 1

logH
=

1

zf̂i,0
+

κ0

D0f̂i,0
=

D0

zRi,0
+

D0κ0

D0Ri,0
=⇒ − Ri,0

logH
=
D0

z
+ κ0

How do we find H? If we choose only the lineages with exactly 50 reads at τ = 0, then Ri,0 = 50, and we
can estimate H evaluating the empirical MGF at τ = 1 (since all lineages with the same number of reads at

τ = 0 would be expected to have the same p(f̂i,1|f̂i,0)), i.e.

Ĥ(z) =
1

n

∑
i

exp
(
−zf̂i,1

)
evaluated for z at “typical” values of 1/f̂i,1.

Now we calculate Ĥ as defined above. Actually, to make the numbers nicer, we (optionally) redefine

Ĥ(z′) =
1

n

∑
i

exp (−z′Ri,1)

so that z′ should actually be chosen around typical values of 1/Ri,1, and our new fitting equation as

− 50

logH
=
D0

D1

1

z′
+ κ0

(this is how the (or one) sample code is written). Calculating Ĥ and fitting to typical values of z′, we find
that a linear fit works very well, that κ0 ≈ 10.01 (intercept), and that the fitted D0/D1 ≈ 2.618 (slope)
comes quite close to the actual D0/D1 ≈ 2.651. Thus, the MGF in equation 20 appears to be a good model
of the data (specifically, the conditional distribution is consistent with the approximation in equations 20
and 21).

1

Figure 1: Relation between −50/ log Ĥ and 1/z; we see a strong linear relation, demonstrating the validity
of our MGF.

Part B

Since we assume that all lineages with Ri,τ ∈ [20, 60] remain neutral for all τ , let Xi,τ = 0 for all τ for these
lineages. We have

− logH =
z
Ri,τ
Dτ

(
1−Xτ∆tτ

)
1 + z κτDτ

=
zRi,τ

(
1−Xτ∆tτ

)
Dτ + zκτ

=⇒ − Ri,τ
logH

=
1

z

Dτ

1−Xτ∆tτ
+

κτ

1−Xτ∆tτ

We can perform the same fitting procedure as in part a at all τ (except the final one) with all lineages with
Ri,τ ∈ [20, 60] using the same definition of Ĥ as in part a. If the inferred slope and intercept of a given fit
are m and b, respectively, then Xτ can be estimated as

Xτ =
1

∆tτ

(
1− Dτ

m

)
and κτ can be estimated as

κτ =
Dτ b

m

Averaging these estimates for all fits performed at a given τ and plotting them as a function of τ , we get
the following:

Figure 2: Change in inferred κτ over the course of the experiment.

2

Figure 3: Change in inferred mean fitness over the course of the experiment.

Finally, we can estimate the fold change in frequency of a neutral lineage over the course of the experiment
by computationally carrying out the integral

exp

(
−
∫ tf

0

X(t′)dt′
)
≈ 0.4

(derive this using f(t) = f0 exp
(∫ t

0
(0−X(t′))dt′

)
for a neutral lineage). Thus, on average, we would expect

to see the frequency of a neutral lineage drop by a factor of roughly 2.5 over the course of the experiment
(of course, this is very noisy).

Part C

We have that
H(z|f̂i,τ) = H(z|(f̂0

i,τ + f̂si,τ)) = Hf̂0
i,τ+1

(z)Hf̂si,τ+1
(z)

where Hf̂0
i,τ+1

(z) only depends on f̂0
i,τ and Hf̂si,τ+1

(z) only depends on f̂si,τ . Plug in the expressions for H:

H(z|f̂i,τ) = exp

[
−
zf̂0
i,τ (1−Xτ∆tτ)

1 + zκτ/Dτ

]
exp

[
−
zf̂si,τ

[
1 + (s−Xτ)∆tτ

]
1 + zκτ/Dτ

]

= exp

−z
[
f̂0
i,τ − f̂0

i,τXτ∆tτ + f̂si,τ + f̂si,τs∆tτ − f̂si,τXτ∆tτ

]
1 + zκτ/Dτ


= exp

−zf̂i,τ
[
1 +

(
s
(
f̂si,τ/f̂i,τ

)
−Xτ

)
∆tτ

]
1 + zκτ/Dτ

 =⇒ Xi,τ,eff = s
f̂si,τ

f̂i,τ

Part D

Use Bayes’ theorem to come up with the following posterior odds ratio:

P (s, t0|{f̂i,τ+1})
P (t0 =∞|{f̂i,τ+1})

=
P ({f̂i,τ+1}|s, t0)P (s, t0)

P ({f̂i,τ+1}|t0 =∞)P (t0 =∞)

Plots of trajectory 14 are shown below. Either of the following could have been interpreted as “trajectory
14” depending on whether 14 was taken to be the barcode ID or a 0-based coordinate.

3

Figure 4: Trajectory of lineage 14 (barcode ID 14).

Figure 5: Trajectory of lineage 15 (barcode ID 15) or lineage 14 in 0-based coordinates.

The fitted version of lineage 14 in 0-based coordinates looks like:

4

0 20 40 60 80 100
Time (generations)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Lin
ea

ge
 fr

eq
ue

nc
y

with a best fit selection coefficient of s ≈ 10%.

Part E

The code below processed the first 1000 barcodes in ∼3 seconds and found 96 beneficial barcodes. At this
rate, we estimate that it will take about a half hour to process the entire set of 5× 105 barcodes.

Consistent with this estimate, running the full dataset took about 22 minutes to run and found ∼12, 000
beneficial barcodes.

Part F

We want to find a t∗ such that by the end of the experiment (time tf), the frequency of a neutral lineage
would be of roughly the same order of magnitude as f(tf |s, t∗):

c

Nbs
exp

[∫ tf

t∗

(
s−X(t′)

)
dt′
]
≈ f0 exp

(
−
∫ tf

0

X(t′)dt′
)

=⇒ c

f0Nbs
exp

(∫ tf

t∗
sdt′

)
exp

(
−
∫ tf

t∗
X(t′)dt′

)
= exp

(
−
∫ tf

0

X(t′)dt′
)

From part b, we know that the right hand side is approximately 0.4, which means that exp
(
−
∫ tf
t∗
X(t′)dt′

)
must be between 0.4 and 1. Since this is a rough order of magnitude calculation, removing a term of this
order will not significantly affect the final answer (provided that s isn’t too large, technically), so

s(tf − t∗) = log

(
0.4f0Nbs

c

)
≈ log

(
f0Nbs

c

)
=⇒ t∗ ≈ tf −

1

s
log

(
f0Nbs

c

)
The formula for the DFE is given by

Ubρ(s)δs ≈ cn(s)

Nbs
∫ t∗(s)

0
e−X(t)dt

.
Applying this formula to the results from the full dataset, we obtain the following estimate of the DFE:

5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Fitness effect, s

0.000000

0.000001

0.000002

0.000003

0.000004

DF
E,

 U
(s

)

Problem 2: Genealogies from sequences of neutral mutations

Note: there are lots of trees that are compatable with the sequences listed in parts (a-d) and part (f). Here
we’ve listed just one set of possibilities that work.

Part A

Assume A is ancestral and the red line indicates a mutation from A to T.

Figure 6: Genealogies for mutation pattern a.

Part B

Assume AG is ancestral, the red line denotes a mutation from A to T, and the blue line denotes a mutation
from G to C.

6

Figure 7: Genealogies for mutation pattern b.

Part C

Once again, assume AG is ancestral, the red line denotes a mutation from A to T, and the blue line denotes
a mutation from G to C.

Figure 8: Genealogies for mutation pattern c.

Part D

There are 2 variable sites and 4 distinct haplotypes spread across 6 individuals, so there cannot be a consistent
genealogy where each mutation happens only once. To see this, consider the 6 unique binary trees for n = 6:

Figure 9: Unique binary trees for n = 6.

A single mutation affecting exactly 3 organisms (here, either mutating A to T or G to C) would need
to happen where there is a (1,2), but we see that all instances of these necessitate that either the other
nucleotide is the same in all 3 first-site-mutant organisms, or there is exactly a 4/2 split in the frequencies
at the other site (of which the 2 must both have the same mutant first site), neither of which is true in our
scenario. So single mutations at each site cannot give rise to our scenario.

7

Part E

The diagram from part d helps us find the right tree architecture for this scenario (ancestral sequence is
AGTG).

Figure 10: Genealogy for mutation pattern e.

8

9

10

11

12

13

14

Sample code for Problem Set 3

1 # Problem 1 of Problem Set 4

2

3 import pylab

4 import numpy

5 import sys

6 from math import exp

7 from scipy.stats import linregress

8

9 # Load Data from File

10 filename = "../data_files/levy_blundell_etal_2015_barcode_trajectories.txt"

11 file = open(filename,"r")

12 header = file.readline()

13 header_items = header.split(",")

14 ts = numpy.array([int(item.split("=")[1]) for item in header_items[1:]])

15 print("Loading trajectories...")

16 coverage_trajectories = []

17 for line in file:

18 items = line.split(",")

19 trajectory = [int(item) for item in items[1:]]

20 coverage_trajectories.append(trajectory)

21 coverage_trajectories = numpy.array(coverage_trajectories)

22 depths = coverage_trajectories.sum(axis=0)

23 frequency_trajectories = coverage_trajectories*1.0/depths[None,:]

24 print("Done!")

25 print("Total coverage at each timepoint", depths)

26 print("Frequency of $R=50: ", 50*1.0/depths[0])

27

28 # Set up some figures

29 pylab.figure(1)

30 # generating function for rare lineages (R0=40)

31 # df/dt = s*f + sqrt(c/Rtot*f)

32 pylab.xlabel(’x = 1/(z*f0)’)

33 pylab.ylabel(’y = 1/log(1/H(z))’)

34 # Set up some figures

35 pylab.figure(2)

36 plotted_trajectory_example=False

37 # first trajectory with inferred fitness > 9%

38 pylab.xlabel(’Time (generations)’)

39 pylab.ylabel(’Lineage frequency’)

40 # Set up some figures

41 pylab.figure(3)

42 # DFE

43 pylab.xlabel(’Fitness effect, s’)
44 pylab.ylabel(’DFE, $U \\rho(s)$’)
45

46 # Infer kappas and mean fitnesses!

47 kappa_ts = []

48 mean_fitnesses = []

49 for drift_idx in range(0,len(ts)-1):

50 dt = ts[drift_idx+1]-ts[drift_idx]

51 winvs = []

52 kappas = []

15

53 for R0 in range(20,60):

54 good_idxs = (coverage_trajectories[:,drift_idx]==R0)

55 observed_coverages = (coverage_trajectories[:,drift_idx+1])[good_idxs]

56 expected_coverage = R0*1.0/depths[drift_idx]*depths[drift_idx+1]

57 zs = 1.0/(numpy.linspace(0.1,2)*expected_coverage)

58 hs = numpy.exp(-zs[None,:]*observed_coverages[:,None]).mean(axis=0)

59 ys = 1.0/numpy.log(1.0/hs)

60 xs = 1.0/zs/expected_coverage

61 slope,intercept,dummy,dummy2,dummy3 = linregress(xs,ys)

62 if (drift_idx==0) and (R0==50):

63 # Plot the generating function!

64 pylab.figure(1)

65 pylab.plot(xs,ys,’k.’)

66 pylab.plot(xs,xs*slope+intercept)

67 pylab.xlim([0,2])

68 winv = slope

69 kappa = intercept*expected_coverage*winv

70 winvs.append(winv)

71 kappas.append(kappa)

72 #print "kappa = ", kappa

73 kappas = numpy.array(kappas)

74 winvs = numpy.array(winvs)

75 kappa_ts.append(kappas.mean())

76 mean_fitnesses.append(numpy.log(winvs.mean())/dt)

77 kappa_ts = numpy.array(kappa_ts)

78 mean_fitnesses = numpy.array(mean_fitnesses)

79 # Other parameters

80 f0s = frequency_trajectories[:,0]

81 twoc = 3.5

82 Nb = 7e07

83 dt = 8

84 Ne = Nb*dt

85 dts = ts[1:]-ts[:-1]

86 mean_fitness_Ws = numpy.exp(-numpy.cumsum(mean_fitnesses*dts))

87 Ub0 = 1e-05

88 sb0 = 1e-1

89 ss = numpy.linspace(0,0.4,80)[1:]

90 ds = ss[1]-ss[0]

91 taus = numpy.arange(-250,100)*1.0

92 dtau = taus[1]-taus[0]

93

94 # Prior from original paper

95 #log_prior = (numpy.log(dtau/(taus[-1]-taus[0])))*numpy.ones_like(taus)[None,:]+(numpy.log(Ub0*ds/sb0)-ss/sb0)[:,None]

96

97 # Modified prior (flat prior in s, but taking account overall probability of producing a mutation)

98 log_prior = numpy.log(2/twoc*Ne*numpy.median(f0s)*(taus[-1]-taus[0])*Ub0*sb0)+(numpy.log(dtau/(taus[-1]-taus[0])))*numpy.ones_like(taus)[None,:] +(numpy.log(ds/(ss[-1]-ss[0])))*numpy.ones_like(ss)[:,None]

99

100 #

101 beneficial_fs = twoc/2/Ne*numpy.exp(ss[None,:,None]*ts[:,None,None]-ss[None,:,None]*taus[None,None,:])/ss[None,:,None]

102 # Don’t take last timepoint

103 beneficial_fs = beneficial_fs[0:-1,:,:]

104 beneficial_fs *= mean_fitness_Ws[:,None,None]

105 # Now go through and infer things per site

106 #plotted_example

16

107 beneficial_mutation_idxs = []

108 beneficial_mutation_ss = []

109 beneficial_mutation_taus = []

110 import time

111 start_time = time.time()

112 #desired_idxs = numpy.arange(0,1000)

113 desired_idxs = numpy.arange(0,coverage_trajectories.shape[0])

114 for i in desired_idxs:

115 freqs = frequency_trajectories[i,0:-1]

116 safe_freqs = (freqs+(freqs==0))

117 beneficial_subfreqs = numpy.clip(beneficial_fs/safe_freqs[:,None,None],0,1)

118 # Calculate effective s as a function of tau

119 effective_ss = ss[None,:,None]*beneficial_subfreqs-(mean_fitnesses)[:,None,None]

120 effective_Ws = numpy.exp(effective_ss*dts[:,None,None])

121 neutral_expected_reads = freqs*depths[1:]

122 selected_expected_reads = neutral_expected_reads[:,None,None]*effective_Ws

123 sqrt_neutral_expected_reads = numpy.sqrt(neutral_expected_reads)

124 sqrt_selected_expected_reads = numpy.sqrt(selected_expected_reads)

125 sqrt_observed_reads = numpy.sqrt(coverage_trajectories[i,1:]*1.0)

126 log_likelihood = 1/4*numpy.log(effective_Ws).sum(axis=0)

127 log_likelihood += -(numpy.square(sqrt_selected_expected_reads-sqrt_observed_reads[:,None,None])/kappa_ts[:,None,None]).sum(axis=0)

128 log_likelihood += +(numpy.square(sqrt_neutral_expected_reads-sqrt_observed_reads)/kappa_ts).sum()[None,None]

129 log_bayes_factor = log_prior + log_likelihood

130 max_b = log_bayes_factor.max()

131 if max_b < 0:

132 continue

133 max_idxs = (log_bayes_factor==max_b)

134 max_ss = (ss[:,None]*numpy.ones_like(taus)[None,:])[max_idxs]

135 max_taus = (taus[None,:]*numpy.ones_like(ss)[:,None])[max_idxs]

136 s = max_ss[0]

137 tau = max_taus[0]

138 beneficial_mutation_idxs.append(i)

139 beneficial_mutation_ss.append(s)

140 beneficial_mutation_taus.append(tau)

141 if i in [14,15]:

142 print "Estimated fitness", s, "for lineage", i, "(0-based)"

143 if s>0.08 and not plotted_trajectory_example:

144 print("Plotting example:", i, s, tau, max_b)

145 # Try to plot it

146 fs = frequency_trajectories[i,:]

147 ff = fs[-1]

148 # build it from reverse

149 reversed_fitted_fs = [ff]

150 for t in reversed(range(0,len(dts))):

151 f = reversed_fitted_fs[-1]*exp(mean_fitnesses[t]*dts[t]-s*dts[t])

152 reversed_fitted_fs.append(f)

153 fitted_fs = numpy.array(reversed_fitted_fs)[::-1]

154 pylab.figure(2)

155 pylab.plot(ts,fs,’k.’)

156 pylab.semilogy(ts,fitted_fs,’-’)

157 #pylab.ylim(1,1e08)

158 pylab.ylim(1e-08,1)

159 plotted_trajectory_example=True

160 print("Done!")

17

161 print("Found", len(beneficial_mutation_idxs), "beneficial mutations out of", i, "(%d total)" % coverage_trajectories.shape[0])

162 end_time = time.time()

163 print("Took", end_time-start_time, "seconds to run")

164 # Calculate contribution for each one:

165

166 print("Calculating DFE")

167 mus = []

168 for s in ss:

169 tmaxs = numpy.log(f0s*2*Ne*s/twoc)/s

170 mutation_weight = Ne*2*s/twoc*(f0s[desired_idxs,None]*(mean_fitness_Ws*dts)[None,:]*(ts[None,1:]<tmaxs[desired_idxs,None])).sum()

171 if mutation_weight == 0:

172 mus.append(-1)

173 else:

174 num_mutations = (beneficial_mutation_ss==s).sum()

175 mus.append(num_mutations/mutation_weight)

176 mus = numpy.array(mus)

177 pylab.figure(3)

178 pylab.plot(ss[mus>0],mus[mus>0],’k.-’)

179 # Problem set output

180 pylab.figure(1)

181 pylab.savefig(’levy_blundell_fig1.pdf’,bbox_inches=’tight’)

182 pylab.figure(2)

183 pylab.savefig(’levy_blundell_fig2.pdf’,bbox_inches=’tight’)

184 pylab.figure(3)

185 pylab.savefig(’levy_blundell_fig3.pdf’,bbox_inches=’tight’)

18

