
Solutions for Problem Set 2

Written by: Anita Kulkarni and Benjamin Good
(last updated on February 12, 2021)

Sample code is provided at the end of the document.

Problem 1: Measuring the per-base-pair mutation rate with the
Luria Delbrück fluctuation test

Part (a)

Answers can vary, of course, but here are a few examples:

Plate ID Number of Resistant Colonies
M6 200
M47 266
O56 175
P37 100
P63 157
Q4 127
Q29 200
S34 500

Part (b)

If we observe zero resistant colonies in a particular population, then we know that there
could not have been any mutations generated in any of the cells at any point during the
grow-up phase. In particular, recall from problem set 1 that MT = 2T

∑T
t=1 m(t)2−t; notice

that MT = 0 only when m(t) = 0 for all t. Since m(t) is Poisson distributed,

P (m(t) = 0) = e−θ(t) = exp
(
−U∆URA3N02t

)
=⇒ P (MT = 0) =

T∏
t=1

P (m(t) = 0) =
T∏
t=1

exp
(
−U∆URA3N02t

)
= exp

(
−U∆URA3N0

T∑
t=1

2t

)

= exp

(
−U∆URA3N0

2(1− 2T)

1− 2

)
= exp

(
−2U∆URA3N0(2T − 1)

)
= p0

Recall that when jackpots are rare (N0U∆URA3 � 1), they will not typically occur in an
experiment, while they are included in the theoretical 〈MT 〉; hence, the coefficient of variation
of MT diverges as N0U∆URA3 → 0. On the other hand, when jackpots are rare, we would
expect to see finite, nonzero values (→ 1) for both p0 and p0, and these quantities are less
sensitive to the number and size of jackpots than MT is. Thus, the coefficient of variation
of p0 would be finite (specifically, it would approach 0) in the limit of rare jackpots, making
p0 a more robust quantity to measure in this limit than MT .

1

Part (c)

If we rearrange the answer from part B, we obtain

log p0 = −2U∆URA3N0(2T − 1) =⇒ U∆URA3 = − log p0

2N0(2T − 1)

By substituting the observed value of p0 for p0, we obtain a plug-in estimator for U∆URA3:

Û∆URA3 = − log p0

2N0(2T − 1)

To find the mean and variance of Û∆URA3, we note that p0 is binomially distributed with
mean p0 and variance p0(1− p0)/n. In the limit that np0 � 1 (i.e. we observe more than a
few plates with zero counts), the central limit theorem implies that

p0 ≈ p0 +

√
p0(1− p0)

n
Z︸ ︷︷ ︸

δp0

(1)

where Z is a standard gaussian random variable and δp0 � p0. This implies that we can
Taylor expand the logarithm in the formula for Û to obtain

Û∆URA3 = − log (p0)

2N0(2T − 1)
= − log (p0 + δp0)

2N0(2T − 1)
(2)

= − log (p0)

2N0(2T − 1)
−

log
(

1 + δp0

p0

)
2N0(2T − 1)

(3)

≈ − log (p0)

2N0(2T − 1)
− δp0

p0 · 2N0(2T − 1)
(4)

≈ − log (p0)

2N0(2T − 1)
−
√

1− p0

np0 (2N0(2T − 1))2 · Z (5)

which shows that

〈Û∆URA3〉 ≈ U∆URA3 (6)

Var(Û∆URA3) ≈ 1− p0

np0 (2N0(2T − 1))2 =
1− p0

np0 log2
(

1
p0

) · U2
∆URA3 (7)

or, for the coefficient of variation,

cV =

√
Var(Û∆URA3)

〈Û∆URA3〉
≈
√√√√ 1− p0

np0 log2
(

1
p0

) (8)

2

Of the n = 720 plates in this experiment, a fraction p0 ≈ 0.37 had zero colonies. Plugging
this into our estimate for Û∆URA3 and ĉV , we obtain

Û∆URA3 ≈ 3× 10−8 (9)

ĉV ≈ 0.05 (10)

As expected, the estimated coefficient of variation is much less than 1, justifying our use of
the δp0/p0 expansion above.

Part (d)

Note that the total SNV rate in the gene × fraction of SNVs that are nonsense ≡ observed
nonsense rate. If we let µ be the per-base-pair SNV rate, then the total SNV rate (in
the gene) is 804 bp ×µ. The fraction of nonsense SNVs is 123

2412
, making the left hand side

123
2412
×804µ = 41µ. The right hand side is Û∆URA3× 64

237
. Plugging in our estimate for Û∆URA3

from the previous part, we get

µ ≈ 2.01× 10−10 mutations

site× generation

Part (e)

Of the 237 loss-of-function mutations, 167 were caused by SNVs. Thus, the rate of loss-of-
functions caused by SNVs per gene per generation = Û∆URA3 × 167

237
. Now we use a similar

line of logic as in the previous part. The total mutation rate (over the gene) × the fraction
of protein function disrupting SNVs (i.e. probability that a random SNV disrupts protein
function) = Û∆URA3 × 167

237
. Our quantity of interest is

Û∆URA3 ×
167

237
× 1

804µ
≈ 0.133

Problem 2: Universality and non-universality among serial dilution
models

Part (a)

The wildtype individuals each have fitness ∼ Gaussian(r, σ2); call this F0. The mutant
individuals each have fitness ∼ Gaussian(r + s, σ2 + ν); call this F1. Denote N0 and N1 as
the total numbers of wildtype and mutant individuals, respectively, where N0 +N1 = N , and
f = N1/N . At the end of a grow-up phase, just before dilution, the total mutant frequency
is:

f(∆t) =
N1(∆t)

N0(∆t) +N1(∆t)
=

∑N1

i eF1,i∆t∑N0

j eF0,j∆t +
∑N1

i eF1,i∆t
=

1
N

∑N1

i eF1,i∆t

1
N

∑N0

j eF0,j∆t + 1
N

∑N1

i eF1,i∆t

Examine each sum individually:

1

N

N1∑
i

eF1,i∆t = f
1

Nf

Nf∑
i

eF1,i∆t = f
1

Nf

Nf∑
i

exp
[(
r + s+

√
σ2 + νZ1,i

)
∆t
]

3

= fe(r+s)∆t 1

Nf

Nf∑
i

exp
[
∆t
√
σ2 + νZ1,i

]
The argument of exp

[
∆t
√
σ2 + νZ1,i

]
is not necessarily small, so it is most rigorous to not

expand the exponential and to treat the whole expression as a random variable Xi. The sum
then becomes

fe(r+s)∆t 1

Nf

Nf∑
i

Xi

but since Nf � 1, we can use the central limit theorem on 1
Nf

∑Nf
i Xi so that

fe(r+s)∆t 1

Nf

Nf∑
i

Xi ≈ fe(r+s)∆t

[
〈Xi〉+

√
Var(Xi)

Nf
Z1

]
The moments of Xi can be calculated by hand or by recognizing that Xi is a log-normal
random variable and utilizing Wikipedia:

〈Xi〉 = e
1
2

(σ2+ν)(∆t)2

Var(Xi) = e(σ2+ν)(∆t)2
[
e(σ2+ν)(∆t)2 − 1

]
Plug these back into our expression:

fe(r+s)∆t

[
〈Xi〉+

√
Var(Xi)

Nf
Z1

]
= fe(r+s)∆t+ 1

2
(σ2+ν)(∆t)2

1 +

√
e(σ2+ν)(∆t)2 − 1

Nf
Z1


If we follow an analogous set of steps for

∑N0

j eF0,j∆t, we get that

N0∑
j

eF0,j∆t ≈ (1− f)er∆t+
1
2
σ2(∆t)2

[
1 +

√
eσ2(∆t)2 − 1

N(1− f)
Z0

]

Plug these expressions back into the original expression for f(∆t):

f(∆t) ≈
fe(r+s)∆t+ 1

2
(σ2+ν)(∆t)2

[
1 +

√
e(σ

2+ν)(∆t)2−1
Nf

Z1

]
(1− f)er∆t+

1
2
σ2(∆t)2

[
1 +

√
eσ

2(∆t)2−1
N(1−f)

Z0

]
+ fe(r+s)∆t+ 1

2
(σ2+ν)(∆t)2

[
1 +

√
e(σ

2+ν)(∆t)2−1
Nf

Z1

]
er∆t+

1
2
σ2(∆t)2

can be canceled from both the numerator and denominator, and we can cancel
ν inside the square roots (this will make it easier to combine terms later) since ν � σ2:

≈
fes∆t+

1
2
ν(∆t)2

[
1 +

√
eσ

2(∆t)2−1
Nf

Z1

]
(1− f)

[
1 +

√
eσ

2(∆t)2−1
N(1−f)

Z0

]
+ fes∆t+

1
2
ν(∆t)2

[
1 +

√
eσ

2(∆t)2−1
Nf

Z1

]
4

Begin expanding f(∆t) to leading order in s, ν, and 1/N :

≈
f
[
1 + s∆t+ 1

2
ν(∆t)2

] [
1 +

√
eσ

2(∆t)2−1
Nf

Z1

]
(1− f)

[
1 +

√
eσ

2(∆t)2−1
N(1−f)

Z0

]
+ f

[
1 + s∆t+ 1

2
ν(∆t)2

] [
1 +

√
eσ

2(∆t)2−1
Nf

Z1

]

=
f + fs∆t+ 1

2
fν(∆t)2 + f

√
eσ

2(∆t)2−1
Nf

Z1 + h.o.t.

1− f + (1− f)
√

eσ
2(∆t)2−1
N(1−f)

Z0 + f + fs∆t+ 1
2
fν(∆t)2 + f

√
eσ

2(∆t)2−1
Nf

Z1 + h.o.t.

Expand as 1/(1 + x) ≈ 1− x:

f(∆t) ≈

f + fs∆t+
1

2
fν(∆t)2 + f

√
eσ2(∆t)2 − 1

Nf
Z1



×

1− fs∆t− 1

2
fν(∆t)2 − f

√
eσ2(∆t)2 − 1

Nf
Z1 − (1− f)

√
eσ2(∆t)2 − 1

N(1− f)
Z0


≈ f + fs∆t+

1

2
fν(∆t)2 + f

√
eσ2(∆t)2 − 1

Nf
Z1 − f 2s∆t

−1

2
f 2ν(∆t)2 − f 2

√
eσ2(∆t)2 − 1

Nf
Z1 − f(1− f)

√
eσ2(∆t)2 − 1

N(1− f)
Z0

= f + f(1− f)s∆t+
1

2
f(1− f)ν(∆t)2 + f(1− f)

√
eσ2(∆t)2 − 1

Nf
Z1− f(1− f)

√
eσ2(∆t)2 − 1

N(1− f)
Z0

= f + f(1− f)∆t

(
s+

1

2
ν∆t

)
+ f(1− f)

√
eσ2(∆t)2 − 1

N

(
1√
f
Z1 −

1√
1− f

Z0

)

= f + f(1− f)∆t

(
s+

1

2
ν∆t

)
+

√
eσ2(∆t)2 − 1

N
f(1− f)Z

We’re not done yet - there is still the dilution step remaining! And in any case, notice that
when σ → 0, the noise term cancels out, which is not what we want.

f(k + 1) =
Poisson(Nf(∆t))

Poisson(N [1− f(∆t)]) + Poisson(Nf(∆t))

We can use the Gaussian approximation to the Poisson distribution since the λ parameter
is large in each case:

≈
Nf(∆t) +

√
Nf(∆t)Z ′1

N [1− f(∆t)] +
√
N [1− f(∆t)]Z ′0 +Nf(∆t) +

√
Nf(∆t)Z ′1

5

=
f(∆t) +

√
f(∆t)
N

Z ′1

1− f(∆t) +
√

1−f(∆t)
N

Z ′0 + f(∆t) +
√

f(∆t)
N

Z ′1

Using similar methods as above (1/(1 + x) ≈ 1 − x, taking lowest-order terms in 1/N), we
find that

f(k + 1) ≈ f(∆t) +

√
f(∆t)(1− f(∆t))

N
Z ′

Plug in f(∆t) from above:

f(k + 1) ≈ f + f(1− f)∆t

(
s+

1

2
ν∆t

)
+

√
eσ2(∆t)2 − 1

N
f(1− f)Z +

√
f(1− f)

N
Z ′

Notice that
√

f(1−f)
N

Z ′ is the lowest-order term when our expression is plugged into
√

f(∆t)(1−f(∆t))
N

Z ′.

Combining the two Gaussian variables gives us a final answer of

f(k + 1) ≈ f + f(1− f)∆t

(
s+

1

2
ν∆t

)
+

√
eσ2(∆t)2

N
f(1− f)Zk

We can see that

〈f(k + 1)〉 ≈ f + f(1− f)∆t

(
s+

1

2
ν∆t

)
and

Var(f(k + 1)) =
eσ

2(∆t)2

N
f(1− f)

Also, it is clear that since the form (f , N dependence) of f(k+ 1) is the same as that of the
original serial dilution model, the two models lie in the same universality class. In units of
cycles,

seff = ∆t

(
s+

1

2
ν∆t

)
, Neff = Ne−σ

2(∆t)2

In units of generations,

seff = s+
1

2
ν∆t, Neff = N∆te−σ

2(∆t)2

Part (b)

This problem starts out similarly part A (we are still using F s the same way), except that
since fitness perturbations are shared across all individuals in the flask, the summations over
the exponents are treated differently:

f(∆t) =

∑N1

i eF1∆t∑N0

j eF0∆t +
∑N1

i eF1∆t
=

N1e
F1∆t

N0eF0∆t +N1eF1∆t
=

fe(F1−F0)∆t

1− f + fe(F1−F0)∆t

Since (F1 − F0)∆t has a small mean and variance, we can use the 1/(1 + x) ≈ 1 − x
approximation:

f(∆t) ≈ fe(F1−F0)∆t(1− fe(F1−F0)∆t + f)

6

Now let’s use the fact that F1−F0 ∼ Gaussian(s, ν) = s+
√
νZ and expand f(∆t) to leading

order in s and ν, starting with the fact that e(F1−F0)∆t ≈ 1 + s∆t+
√
ν∆tZ:

f(∆t) ≈ f(1+s∆t+
√
ν∆tZ)[1−f(1+s∆t+

√
ν∆tZ)+f] = f(1+s∆t+

√
ν∆tZ)(1−fs∆t−f

√
ν∆tZ)

≈ f(1 + s∆t+
√
ν∆tZ − fs∆t− f

√
ν∆tZ) = f + f(1− f)s∆t+ f(1− f)

√
ν∆tZ

We’ve already done most of the work of the dilution step in part A, so simply plug in the
last part:

f(k + 1) ≈ f + s∆tf(1− f) + f(1− f)
√
ν∆tZ +

√
f(1− f)

N
Z ′

Combining the two Gaussian variables gives us a final answer of

f(k + 1) ≈ f + s∆tf(1− f) +

√
f(1− f)

N

√
Nν(∆t)2f(1− f) + 1Zk

Thus,
〈f(k + 1)〉 = f + s∆tf(1− f)

and

Var(f(k + 1)) =
f(1− f)

N

[
Nν(∆t)2f(1− f) + 1

]
This model is clearly not in the same universality class as the original serial dilution model
because of the extra

√
f(1− f) dependence in the Zk term.

Problem 3: Neutral mutation accumulation in individuals vs. pop-
ulations

Part (a)

The probability of any individual having a mutation at site ` is f`(t). The expected number
of mutations a randomly sampled individual would have is

M1(t) =
L∑
`=1

[f`(t)× 1 + (1− f`(t))× 0] =
L∑
`=1

f`(t)

Part (b)

This calculation can be done analogously to that of part A, but we can also notice that the
probability that site ` contains a mutation in both of two randomly chosen individuals is the
product of the probabilities of each individual independently containing a mutation at the
site. Adding this up over all sites, we get that

M2(t) =
L∑
`=1

f 2
` (t)

7

The above gives the expected number of shared sites, but if we want the expected number
of shared mutations, multiply by 2:

M2(t) = 2
L∑
`=1

f 2
` (t)

The results are analogous for a random sample of n individuals:

Mn(t) =
L∑
`=1

fn` (t)

for shared sites, and

Mn(t) = n

L∑
`=1

fn` (t)

for shared mutations.

Part (c)

This will be similar to what was done in class (throughout the problem, Ne will just be
written as N):

∂f

∂t
= µ(1−f)−νf+

√
f(1− f)

N
η(t) =⇒ f(t+δt) = f(t)+[µ−µf(t)]δt+

√
f(t)(1− f(t))δt

N
Zt−νf(t)δt

=⇒ 〈f(t+ δt)〉 = 〈f(t)〉+ µδt− (µ+ ν)〈f(t)〉δt =⇒ ∂〈f〉
∂t

= µ− (µ+ ν)〈f〉

After solving this equation with an initial condition of 〈f(0)〉 = 0 (since there is a clonal
ancestor), we get

〈f(t)〉 =
µ

µ+ ν

(
1− e−(µ+ν)t

)
and

M1(t) = L
µ

µ+ ν

(
1− e−(µ+ν)t

)
Part (d)

Start with the same SDE as before:

f(t+ δt) = f(t) + µδt− (µ+ ν)f(t)δt+

√
f(t)(1− f(t))δt

N
Zt

Square both sides and remove all terms that average to 0 (proportional to Zt) or that are
not lowest order in δt:

f 2(t+ δt) = f 2(t) + 2µf(t)δt− 2(µ+ ν)f 2(t)δt+
1

N
f(t)Z2

t δt−
1

N
f 2(t)Z2

t δt

8

and hence:

∂〈f 2(t)〉
∂t

= 2µ〈f(t)〉 − 2(µ+ ν)〈f 2(t)〉+
1

N
〈f(t)〉 − 1

N
〈f 2(t)〉

=

(
2µ+

1

N

)
〈f(t)〉 −

[
2(µ+ ν) +

1

N

]
〈f 2(t)〉

Plugging in for 〈f(t)〉, we have

∂〈f 2(t)〉
∂t

=
µ

µ+ ν

(
2µ+

1

N

)(
1− e−(µ+ν)t

)
−
[
2(µ+ ν) +

1

N

]
〈f 2(t)〉

This differential equation can be solved using the integrating factor method, which (for
〈f 2(0)〉 = 0) yields

〈f 2(t)〉 =
µ

µ+ ν

(
2µ+

1

N

)
e−[2(µ+ν)+ 1

N]t
∫ t

0

[
e[2(µ+ν)+ 1

N]t′ − e(µ+ν+ 1
N)t′
]
dt′

=
µ

µ+ ν

(
2µ+

1

N

)[
1− e−[2(µ+ν)+ 1

N]t

2(µ+ ν) + 1
N

− e−(µ+ν)t − e−[2(µ+ν)+ 1
N]t

µ+ ν + 1
N

]

and hence

M2(t) =
Lµ

µ+ ν

(
2µ+

1

N

)[
1− e−[2(µ+ν)+ 1

N]t

2(µ+ ν) + 1
N

− e−(µ+ν)t − e−[2(µ+ν)+ 1
N]t

µ+ ν + 1
N

]

= Lµ

(
2Nµ+ 1

Nµ+Nν + 1

)[
1− e−(µ+ν)t

µ+ ν
− 1− e−[2(µ+ν)+ 1

N]t

2(µ+ ν) + 1
N

]

In laboratory settings, the parameters L, µ, and N will often be such that

1

Lµ
� N � 1

µ
(11)

For example, for the E. coli populations in Problem 4 of Problem Set 1, we have something
like L ∼ 106, µ ∼ 10−10, and N ∼ 107. In the empirically relevant limit where t� 1/µ, our
expressions for M1(t) and M2(t) reduce to

M1(t) ≈ Lµt (12)

M2(t) ≈ Lµt ·
(

1− 1− e−t/N

t/N

)
≈

{
Lµt2

2N
if t� N

Lµt if t� N
(13)

This shows that the number of mutations per clone will increase at rate Lµ, but the number
of mutations shared by a pair of clones will be much less than this until t & N . The reason
for this is that mutations are unlikely to be shared by a pair of random individuals unless
they drift to intermediate frequencies — this requires a time of order t∼N .

9

Problem 4:

Part (a)

From the definitions of εi and ∆i, we have

∆i ≡ ŝi,1 − ŝi,2 = (si + εi,1)− (si + εi,2) = εi,1 − εi,2 (14)

and

εi ≡ si − si =
ŝi,1 + ŝi,2

2
− si =

(si + εi,1) + (si + εi,2)

2
− si =

εi,1 + εi,2
2

(15)

If the distsribution of εi,j is symmetric, then −εi,j has the same distribution as εij. This
implies that εi,1 − εi,2 has the same distribution as εi,1 + εi,2, which implies that εi has the
same distribution as ∆i/2. By pooling our observations of ∆i across different gene deletions,
we can estimate the empirical distribution of εi:

0.04 0.02 0.00 0.02 0.04
0

100

200

300

400

500

p(
)

This shows that the typical errors in the fitness estimates are on the order of 〈|εi|〉 ≈ 0.5%.

(Note: in estimating this distribution, we haved removed 255 genes in which si,1 or si,2 is
less than −0.2, as we noticed that these have εi values much higher than the other genes,
although they are still small compared to si.)

Part (b)

If all gene deletions were neutral (si = 0), then the distribution of si would be the same as
the distribution of εi that we estimated above. We can therefore use this empirical estimate
to calculate the fraction of genes we would expect to observe with |si| ≥ s under this null
hypothesis, which is shown in the black line below:

10

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Fitness effect, s

100

101

102

103

Nu
m

be
r o

f g
en

es
 w

ith
 |s

i|
s

Expected
Observed

By comparing to the observed distribution (red line), we see that the estimated fraction
of false positives decays to 5% for fitness effects of size s≈2.5% (dashed line). Roughly
1100 genes (≈25% of the total) have absolute fitness effects larger than this value, the vast
majority of which are negative. Much larger fitness costs are also possible: on the order of
a few hundred genes have fitness costs larger than 10%.

Part (c)

We can carry out the same procedure for beneficial fitness effects (si ≥ s), by multiplying the
expected distribution above by a factor of 0.5 (to focus on positive half of p(ε)) and another
factor of 0.75 (to account for the significantly deleterious mutations identified above). This
yields:

0.00 0.02 0.04 0.06 0.08 0.10
Fitness effect, s

100

101

102

103

Nu
m

be
r o

f g
en

es
 w

ith
 s i

s

Expected
Observed
Observed-Expected

In this case, the estimated false positive rate never decays as low as 5%, so no mutations are
“statistically significant” on their own. However, we still observe a roughly 5-fold enrichment
of gene deletions with beneficial fitness effects larger than ≈2.5% (dashed line). There are
about 100 observed genes here, 20 of which would be expected to arise by chance (false
positive rate of 20%) leaving about 80 genes as true positives.

A rough estimate of the distribution of fitness effects of these true positives can be
obtained by subtracting the expected number of false positives from the observed number of

11

genes with different values of si ≥ s (blue line). This shows that the vast majority of fitness
effects lie between 2.5− 5%, and decay roughly exponentially with s.

Part (d)

If all beneficial mutations correspond to loss of function mutations, then the analysis in part
(c) suggests that, for s ≥ 2.5%, we can estimate the distribution of fitness effects of beneficial
gene deletions by the blue line above, but with an additional scale factor µ∆, which represents
the mutation rate to loss of function phenotypes in a single gene. Using the estimate for the
URA3 gene from Problem 1 (µ∆ ≈ U∆ ≈ 3×10−8), our estimate for Ubρ(s) can be expressed
as

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Fitness effect, s

10 8

10 7

10 6

10 5

Di
st

rib
ut

io
n

of
 fi

tn
es

s e
ffe

ct
s,

s
U

b
(u

)d
u

Observed-Expected

In other words, in this enviornment, each cell has a total probability of∼2×10−6 of producing
a beneficial mutation with s ≥ 2.5%.

Part (e)

If there are ≈5000 strains in the library, each strain should start at an average frequency
of f0 ≈ 1/5000 ≈ 2 × 10−4. A fitness effect of order smin = 〈|εi|〉≈0.5% would change the
frequency of such a strain by

f(∆t)− f0 =
f0e

s∆t

f0es∆t + (1− f0)
− f0 ≈ 3× 10−5. (16)

over the ∆t = 26 generations of the assay. The analogous changes due to genetic drift are of
order ∆f∼

√
f0∆t/Ne. We therefore require a population size less than ∼∆tf0/∆f

2∼5×106

to produce a frequency change comparable to the minimum resolvable fitness effect.
Similarly, we’d need a frequency resolution of at least ∆f∼3 × 10−5 to show that the

fitness effect of a truly neutral mutation is less than smin≈0.5%.

12

Sample code for Problem Set 2

13

1 import numpy

2 import sys

3

4 file = open("../data_files/lang_murray_08_fluctuation_test.txt","r")

5 file.readline() # ignore header

6 colony_counts = []

7 for line in file:

8 items = line.split(",")

9 count = float(items[1])

10 colony_counts.append(count)

11

12 colony_counts = numpy.array(colony_counts)

13

14 T = 13

15 N = 2000

16

17 n = len(colony_counts)

18 p0 = (colony_counts==0).sum()*1.0/n

19

20 U = -numpy.log(p0)/(2*N*(2**T))

21

22 cv = numpy.sqrt((1-p0)/(n*p0*numpy.square(numpy.log(1/p0))))

23

24 sys.stdout.write("n=%d\n" % len(colony_counts))

25 sys.stdout.write("pbar0 = %g\n" % p0)

26 sys.stdout.write("U_dURA = %g x 10^-8\n" % (U*1e08))

27 sys.stdout.write("cv = %g\n" % cv)

14

1 import pylab

2 import numpy

3 import sys

4

5 file = open("../data_files/qian_etal_2012_deletion_fitnesses.txt")

6 file.readline() # header

7 gene_names = []

8 s1s = []

9 s2s = []

10 pseudogenes = []

11 for line in file:

12 items = line.split(",")

13 gene_names.append(items[0].strip())

14 s1s.append(float(items[1]))

15 s2s.append(float(items[2]))

16

17 if gene_names[0]=="*":

18 pseudogenes.append(True)

19 else:

20 pseudogenes.append(False)

21

22 s1s = numpy.array(s1s)

23 s2s = numpy.array(s2s)

24 pseudogenes = numpy.array(pseudogenes)

25

26 bad_ss = numpy.logical_or(s1s<-0.2,s2s<-0.2)

27 good_idxs = numpy.logical_not(bad_ss)

28

29 print bad_ss.sum(), "strongly deleterious indices"

30 print good_idxs.sum(), "remaining genes"

31 s1s = s1s[good_idxs]

32 s2s = s2s[good_idxs]

33

34 # s2s-s1s = eps2 - eps1 ~ eps1+eps2 (in distribution)

35 # s1s+s2s/2 = sbars + (eps1+eps2)/2 in distribution.

36

37 ss = (s1s+s2s)/2

38 errors = numpy.fabs(s2s-s1s)

39 simulated_stderrs = errors/2.0

40

41 #print (ss>=0).sum(), (ss<0).sum()

42

43 sigma = (numpy.square(simulated_stderrs).mean())**0.5

44 standard_errors = simulated_stderrs/sigma

45

15

46 print "sigma =", sigma

47 print "<|epsbar|> =", simulated_stderrs.mean()

48 xs = numpy.linspace(0,40,100)

49 error_sf = numpy.array([(standard_errors>x).mean() for x in xs])

50 observed = numpy.array([(ss/sigma>x).sum() for x in xs])

51

52 observed_all = numpy.array([(numpy.fabs(ss)/sigma>x).sum() for x in xs])

53 expected_all = numpy.array([(standard_errors>x).sum() for x in xs])

54 fdr_all = (expected_all+(observed_all==0))*1.0/(observed_all+(observed_all==0))

55 num_deleterious = observed_all-expected_all

56

57 # Get index closest to FDR of 5%

58 critical_idx = numpy.fabs(fdr_all-0.05).argmin()

59 print "Critical s for |s_i|>s is ", xs[critical_idx]*sigma, ’FDR=%g’ % fdr_all[critical_idx]

60 print "Number of genes is", num_deleterious[critical_idx], ’(%g)’ % (num_deleterious[critical_idx]*1.0/observed_all[0])

61

62 pylab.figure(3)

63 bins = numpy.linspace(-0.05,0.05,100)

64 pylab.hist(numpy.hstack([simulated_stderrs,-1*simulated_stderrs]),bins=bins)

65 pylab.xlim([-0.05,0.05])

66 pylab.xlabel(’$\overline{\epsilon}$’)
67 pylab.ylabel(’$p(\overline{\epsilon})$’)
68 pylab.savefig(’problem_4_a.pdf’)

69

70 pylab.figure(1)

71 pylab.semilogy(xs*sigma,expected_all,’k-’,label=’Expected’)

72 pylab.semilogy(xs*sigma,observed_all,’r-’,label=’Observed’)

73 pylab.semilogy([xs[critical_idx]*sigma,xs[critical_idx]*sigma],[1,observed_all[0]],’k:’)

74

75 pylab.ylim([1,5e03])

76 pylab.xlim([0,0.2])

77 pylab.xlabel(’Fitness effect, s’)

78 pylab.ylabel(’Number of genes with $|s_i| \geq s$’)
79 pylab.legend(frameon=False,loc=’upper right’)

80 pylab.savefig(’problem_4_b.pdf’)

81

82 observed_ben = numpy.array([(ss/sigma>x).sum() for x in xs])

83 expected_ben = numpy.array([(standard_errors>x).sum()/2.0*(3.0/4) for x in xs])

84 fdr_ben = (expected_ben+(observed_ben==0))*1.0/(observed_ben+(observed_ben==0))

85

86 # Get index closest to FDR of 10%

87 critical_idx = numpy.fabs(fdr_ben-0.05).argmin()

88

89 print "Critical s for s_i>s is ", xs[critical_idx]*sigma, ’FDR=%g’ % fdr_ben[critical_idx]

90 print "Number of genes is", observed_ben[critical_idx], ’(%g)’ % (observed_ben[critical_idx]*1.0/observed_all[0])

16

91 print "Number of remaining genes is", observed_ben[critical_idx]-expected_ben[critical_idx]

92

93 pylab.figure(2)

94 pylab.semilogy(xs*sigma,expected_ben,’k-’,label=’Expected’)

95 pylab.semilogy(xs*sigma,observed_ben,’r-’,label=’Observed’)

96 pylab.semilogy(xs*sigma,observed_ben-expected_ben,’b-’,label=’Observed-Expected’)

97 pylab.semilogy([xs[critical_idx]*sigma,xs[critical_idx]*sigma],[1,observed_all[0]],’k:’)

98 pylab.ylim([1,5e03])

99 pylab.xlim([0,0.1])

100 pylab.xlabel(’Fitness effect, s’)
101 pylab.ylabel(’Number of genes with $s_i \geq s$’)
102 pylab.legend(frameon=False,loc=’upper right’)

103 pylab.savefig(’problem_4_c.pdf’)

104

105 pylab.figure(42)

106 pylab.semilogy(xs*sigma,3e-08*(observed_ben-expected_ben),’b-’,label=’Observed-Expected’)

107 pylab.semilogy([xs[critical_idx]*sigma,xs[critical_idx]*sigma],[1,observed_all[0]],’k:’)

108 pylab.ylim([1e-08,1e-05])

109 pylab.xlim([0.02,0.1])

110 pylab.xlabel(’Fitness effect, s’)
111 pylab.ylabel(’Distribution of fitness effects, $\\int_{s}^{\\infty} U_b \\rho(u) du$’)
112 pylab.legend(frameon=False,loc=’upper right’)

113 pylab.savefig(’problem_4_d.pdf’)

114

115 #pylab.show()

17

