
APPHYS 237 / BIO 251 – Mathematical Prerequisites

This course is designed to be accessible to students with a broad range of backgrounds in physics,
biology, applied mathematics, engineering, etc. The main prerequisites for the course are math-
ematical, in particular, proficiency in multivariable calculus and basic familiarity with differential
equations and probability theory.

The goal of this document is to list some of the mathematical concepts you should be familiar
with in order to thrive in the course. Depending on your learning style, it may be possible to pick
up one or two of these concepts during the course itself (particularly if you are the kind of person
who likes learning through applications). However, we will be building on many of these concepts
to introduce new mathematical tools that we will need for the course, so it may be difficult to catch
up if you are unfamiliar with too many of the prerequisites.

Mathematical Prerequisites

Calculus

• Derivatives, e.g. if f(x) = exp
(
−x2

)
, then

f ′(x) ≡ ∂f

∂x
= −2x exp

(
−x2

)
(1)

f ′′(x) ≡ ∂2f

∂x2
= −2 exp

(
−x2

)
+ 4x2 exp

(
−x2

)
(2)

• Integrals, e.g. ∫
xe−x

2

dx = −1

2
e−x

2

(3)∫
xe−xdx = −(1 + x)e−x (4)

• Series expansions, e.g. Taylor series around x = a:

f(x) =

∞∑
k=0

(x− a)k

k!

∂kf

∂xk

∣∣∣∣
x=a

(5)

e.g., around x = 0,

ex = 1 + x+
x2

2
+ . . . =

∞∑
k=0

xk

k!
(6)

1

1 + x
= 1− x+ x2 + . . . =

∞∑
k=0

(−1)kxk (7)

log (1 + x) = x− x2

2
+ . . . =

∞∑
k=1

(−1)k
xk

k
(8)

Eq. 7 also yields a formula for the sum of a geometric series with a finite number of terms:

n∑
k=0

xk =
1− xn+1

1− x
(9)
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Using truncated Taylor series as approximations, e.g. when “x is close to 0”,

e−x ≈ 1− x (10)

(1 + x)k ≈ 1 + kx (11)

log(1 + x) ≈ x (12)

Differential equations

• Ordinary differential equations, e.g.

Exponential growth:
∂f

∂t
= sf −→ f(t) = f(0)est (13)

Logistic growth:
∂f

∂t
= sf(1− f) → f(t) =

f(0)est

1 + f(0) (est − 1)
(14)

Verification of solutions by substitution. Finding solutions using separation of variables
and/or integrating factors, e.g.

∂f

∂t
= sf + U(t) −→ f(0)est + est

∫ t

0

U(t′)e−st
′
dt′ (15)

• Partial differential equations, e.g.

Advection equation:
∂f

∂t
= −v ∂f

∂x
−→ f(x, t) = f(x− vt, 0) (16)

Diffusion equation:
∂f

∂t
= D

∂f

∂x2
→ f(x, t) =

∫ ∞
−∞

f(x′, 0)√
4πDt

e−
(x−x′)2
Dt dx′ (17)

Verification of solutions by substitution. (Advanced) Obtaining solutions via separation of
variables or Fourier/Laplace transforms

Probability and statistics

• Discrete random variables, Pr[a ≤ X ≤ b] =
∑b
k=a Pr[X = k], e.g.

Bernoulli(p) distribution: Pr[X = k] =

{
p if k = 1

1− p if k = 0
, k = 0, 1 (18)

Binomial(n, p) distribution: Pr[X = k] =

(
n

k

)
pk(1− p)n−k , k = 0, 1 . . . , n (19)

Poisson(λ) distribution: Pr[X = k] =
λk

k!
e−λ , k = 0, 1, . . . ,∞ (20)
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• Continuous random variables, Pr[a ≤ X ≤ b] =
∫ b
a
p(x) dx, e.g.

Exponential(λ) distribution: p(x)dx = λe−λxdx , x ≥ 0 (21)

Gaussian(µ, σ2) distribution: p(x)dx =
1√

2πσ2
e−

(x−µ)2

2σ2 dx , −∞ < x <∞ (22)

Point distribution / δ-function: δ(x− a) ≡ lim
ε→0

1√
2πε2

e−
(x−a)2

2ε2 (23)

such that ∫ y

−∞
f(x)δ(x− a)dx =

{
f(a) if y > a

0 if y < a
(24)

This allows us to write a discrete distribution in continuous terms:

p(x)dx =
∑
k

Pr[X = k] · δ(x− k)dx (25)

• Joint distributions, p(x, y), including

Marginalization / law of total probability: p(x) =

∫
p(x, y)dy (26)

Conditional probability: p(x|y) =
p(x, y)

p(y)
(27)

Independence: p(x, y) = p(x)p(y) (28)

• Expectation values, e.g.

Expected value / ensemble average: E [g(X)] ≡ 〈g(X)〉 ≡
∫
g(x)p(x) dx (29)

Conditional expectation: E [g(X)|Y ] ≡ 〈g(X)〉 ≡
∫
g(x)p(x|y) dx (30)

Mean: µX ≡ E [X] ≡ 〈X〉 ≡
∫
xp(x)dx (31)

Variance: σ2
X ≡ Var(X) ≡ E

[
(X − µX)2

]
= E[X2]− E[X]2 (32)

Moment generating function / Laplace transform: H(z) ≡ E[e−zX ] (33)

From the properties of Taylor series, the definition of the moment generating function implies
that

H(z) =

∞∑
k=0

(−z)k

k!
〈Xk〉 (34)

or

〈Xk〉 = (−1)k
∂kH

∂zk

∣∣∣∣
z=0

(35)
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• Central limit theorem: For independent and identically distributed random variablesX1, . . . , Xn

with a finite mean and variance, define the sample average X ≡ 1
n

∑n
i=1Xi. Then

E
[
X
]

= µX , Var
(
X
)

=
σ2
X

n
(36)

and, as n→∞, the distribution of X converges to a Gaussian distribution with mean µX = µX
and variance σ2

X
= σ2/n.

Note: A similar approximation applies for any random variable whose distribution is suffi-
ciently “strongly peaked” around a characteristic value x0. In this case, Taylor expansion
of `(x) ≡ log p(x) yields:

`(x) ≈ `(x0) + `′(x0)(x− x0) +
1

2
`′′(x0)(x− x0)2 = `(x0)− |`

′′(x0)|
2

(x− x0)2 (37)

so that p(x) is approximately Gaussian with mean µX = x0 and variance σ2
X = |`′′(x0)|−1.

Programming Prerequisites

The problem sets will also make frequent use of basic programming skills, e.g. the ability to read
numerical or textual data from a file, do a few calculations with it, and plot the results in a figure.
This is best illustrated with an example from the first problem set. If you feel confident carrying
out the programming tasks in this problem in your favorite language (or feel like you could quickly
learn these things as you go using the internet), then you will be in good shape for the rest of the
course as well.

Example problem: molecular evolution and genetic diversity in
the influenza virus

The text file influenza_HA_dna_sequences.fasta contains a list of 841 complete DNA
sequences of the hemagluttinen (HA) gene in influenza virus samples collected between
1968 and 2005. Hemagluttinen is a surface protein that allows the viruses to enter
host cells, making it a primary target for neutralizing antibodies. This creates a strong
selection pressure for the HA gene to evolve over time to evade these immune defenses.

(a) Calculate the number of single nucleotide differences between the first sample
(A/Aichi/2/1968) and the remaining samples, and plot the results as a function
of the sampling year. How many differences have accumulated over this ∼40 year
period? What fraction of the HA gene does this account for?

(b) Calculate the number of genetic differences between all pairs of strains from the
same year, and plot the distribution of this quantity aggregated across all years.
Estimate the genetic “turnover time” – i.e., how long would we have to wait for
the population to accumulate the same number of genetic differences that typically
separate co-circulating strains.
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