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The distribution and heritability of many traits depends on numerous loci in the genome. In
general, the astronomical number of possible genotypes makes the system with large numbers of
loci difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak
selection and frequent recombination. In this limit, populations rapidly reach Quasi-Linkage
Equilibrium (QLE) in which the dynamics of the full genotype distribution, including correlations
between alleles at different loci, can be parameterized by the allele frequencies. This review
provides a simplified exposition of the concept and mathematics of QLE which is central to the
statistical description of genotypes in sexual populations. We show how key results of Quantitative
Genetics such as the generalized Fisher’s “Fundamental Theorem”, along with Wright’s Adaptive
Landscape, emerge within QLE from the dynamics of the genotype distribution. We then discuss
under what circumstances QLE is applicable, and what the breakdown of QLE implies for the
population structure and the dynamics of selection. Understanding of the fundamental aspects of
multilocus evolution obtained through simplified models may be helpful in providing conceptual
and computational tools to address the challenges arising in the studies of complex quantitative
phenotypes of practical interest.
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I. INTRODUCTION

R.A. Fisher’s celebrated “Fundamental theorem of natural selection”, relating the rate of change in the average
fitness to the genetic variance in fitness, occupies a place in Population Genetics similar to Newton’s “F = ma” in
Physics. Yet conceptually Fisher’s law and the whole subject of “Quantitative Genetics” (Falconer and Mackay, 1996;
Lynch and Walsh, 1998), which studies the response of quantitative traits to selection, is closer to Thermodynamics.
Thermodynamics is a phenomenological description of readily measurable physical properties (e.g. average energy
or pressure) of a large ensemble of molecules. Quantitative Genetics is a phenomenological description of readily
observable phenotypic traits of a population. Thermodynamics takes macroscopic averages over the random motion
of individual molecules in thermal equilibrium. Quantitative Genetics similarly focuses on the behavior of population-
wide averages (and variances) over many genetically diverse individuals. The genetic composition of the population
is governed by natural selection and random drift along with recombination and mutation, all acting on individuals.
The phenotype distribution is related to the genotype distribution by the largely unknown genotype-to-phenotype
map, which is further obscured by environmental effects which can cause phenotypic variation even between genet-
ically identical individuals. Yet deterministic laws of Thermodynamics emerge despite the complexity and chaos of
molecular motion. In fact they emerge thanks to the microscopic complexity and chaos and are made possible by the
extensive self-averaging that dominates macroscopic behavior of physical matter. Similarly, simple laws of quantitative
population genetics emerge when phenotypic traits depend on large numbers of polymorphic genetic loci.

While the analogy between Quantitative Genetics (QG) and Thermodynamics is most appealing and has been noted
by many including R.A. Fisher himself (Fisher, 1930) - see Barton and Vladar (2009); Iwasa (1988); Sella and Hirsh
(2005) for recent work - fundamental issues such as the lack of energy-like conserved quantity in population genetics
impede direct transcription of thermodynamic laws to QG. Instead, the analogy must be pursued as an approach
to the construction of a coarse-grained phenomenological theory bridging the gap between ensemble averaged (read
population averaged) observables and the hidden micro-scale (read individual genotype) dynamics. One must be
careful to define an averaging ensemble that equilibrates on the time-scale of the observation, e.g. the response
to selection in QG. In particular, as we illustrate in Figure 1, dynamics in sexually reproducing populations are
characterized by two widely different time-scales: 1) mating and recombination reshuffle the polymorphic loci, allowing
exploration of the space of genotypes on a short time scale and 2) mutation and population drift control genetic
variation on much longer time scales, often long enough to render the ensemble meaningless.

The bridge between the dynamics of the genotype distribution and the coarse grained, QG-type, description is
built on understanding multi-locus evolution. Our review will focus on the intermediate time scale in the above
mentioned hierarchy. We will show how the genotype distribution P (g, t) can be parameterized by slowly varying
allele frequencies, while mating and recombination lead to rapid equilibration of P (g, t) given a set of allele frequencies.
In this ensemble trait distributions are determined by allele frequencies and the dynamics of trait averages can be
expressed in terms of the dynamics of allele frequencies. This in turn gives rise to the familiar laws of quantitative
genetics in terms of additive variances and covariances. In this sense, a statistical multi-locus theory plays the role of
Statistical Mechanics, which explains how the deterministic laws of thermodynamics emerge from the erratic motion
of many microscopic particles. Hence the subject of the present review should be thought of as “Statistical Genetics”
- a term introduced in a closely related context by Wright (1942).

Classical Quantitative Genetics (Falconer and Mackay, 1996) is based on the assumption that genotypes are random
re-assortments of alleles, each occurring with a certain frequency. This absence of correlations between alleles at
different loci is termed “linkage equilibrium”, implying that recombination (breaking linkage) has relaxed correlations
between loci. This drastic simplification has earned QG a derogatory epithet of “beanbag genetics” from the pen of
Ernst Mayr (Mayr, 1963) (see however Haldane (1964) in defense of beanbag genetics). Yet in the present review
we shall see that the key phenomenological laws of QG extend beyond the assumption of linkage equilibrium. This
understanding emerges from the studies of multilocus selection which began with two alleles/two loci systems (Karlin
and Feldman, 1969; Kimura, 1956; Lewontin and Kojima, 1960). Kimura (1965) showed that a two locus system
tends towards a state where allele frequencies change slowly and correlations are small and steady. He termed
this state Quasi-Linkage Equilibrium (QLE), which is the subject of this review. Subsequently, several comprehensive
treatments of multilocus evolution were developed (Baake, 2001; Barton and Turelli, 1991; Bürger, 1991; Christiansen,
1990; Nagylaki, 1993; Prügel-Bennett and Shapiro, 1994) (for a monograph see Bürger (2000)) with Barton and Turelli
(1991) and Nagylaki (1993), in particular, generalizing and justifying the QLE approximation in multi-locus systems.

In addition to the study of generic behavior of systems with a very large number of loci, explicit multi-locus modeling
of smaller systems has been used to study the evolution of recombination (Barton, 1995a; Roze and Barton, 2006) and
patterns of genetic variation produced by positive selection (Stephan et al., 2006). Recent work produced interesting
examples (de Visser et al., 2009; Weinreich et al., 2006) of empirically determined fitness landscapes with five or more
loci. The dynamics of populations on these landscapes can be studied in laboratory experiments and comparison to
theoretical models is possible (de Visser et al., 2009). Quantitative understanding of multi-locus evolution is also
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Short times: Dynamics of genotype distribution

Intermediate times: Ensemble of individuals

Long times: Ensemble of Populations 
e.g. distributions of allele frequencies

Recombination and 
selection on standing variation

Mutation, drift, selection over long times

• Kimura’s diffusion equation

• Mutation, selection, drift balance:
Wright’s Equilibrium

• “Microscopic” description: 

• P(g,t) is defined on 2L possible genotypes

• Allele frequency dynamics and 
Quantitative Genetics

• Wright’s adaptive surface

• Fisher’s Theorem

FIG. 1 Time scales in sexual populations. A population is described by the distribution of 2L genotypes, on which selection,
recombination and mutation acts. In sexual populations, mating and recombination is the fastest process, so that different loci
are only weakly correlated (close to linkage equilibrium) and its dynamics can be approximately described via L allele frequencies
– a number much smaller than the 2L possible genotypes that would have to be tracked otherwise. Allele frequencies change
slowly and means of quantitative traits follow the laws of quantitative genetics. Over the much (much) longer time-scale of
µ−1, allele frequencies themselves tend to an equilibrium between selection, mutation, and genetic drift (assuming a constant
environment).

essential when studying the emergence of drug resistance in HIV, which often depends on several interacting loci in
a recombining population (Bretscher et al., 2004; Kellam et al., 1994; Nora et al., 2007).

Our discussion of the multilocus selection problem will follow the Barton-Turelli course of making and keeping
it simple (Barton and Turelli, 1991; Turelli and Barton, 1994), by attempting to make it simpler still. We will
define a streamlined conceptual and analytic framework which will not only reproduce classic results, but also readily
generate some new extensions. To accomplish this we will formulate and analyze a “minimal model” of multilocus
evolution: continuous time selection in a haploid model with a general (epistatic) fitness function of L loci. We shall
show how the Generalized Fisher Theorem and other results of quantitative genetics follow from a straightforward
cumulant perturbation theory similar to that used extensively (for high temperature expansions) in Statistical Physics
(McQuarrie, 1973). The perturbative regime corresponds to Kimura’s Quasi-Linkage Equilibrium (QLE). Using this
formulation of QLE, we present systematic generalizations of QG results and of (Kimura’s) diffusion theory, typically
formulated in complete linkage equilibrium, to include weak correlations between loci. We also discuss how QLE
breaks down when the ratio of characteristic strength of selection to the rate of recombination exceeds a critical
value that depends on the strength of epistasis. While the QLE regime corresponds to selection of individual alleles
based on their effect on fitness averaged over genetic backgrounds, the breakdown of QLE follows the appearance of
strong correlations between alleles at different loci and represents a transition to effective selection of genotypes. In
the Discussion section we shall connect the transition from “allele selection” to “genotype selection” to the closely
related spin-glass transition (modeling the behavior of disordered magnets) studied in Statistical Physics (Mezard
et al., 1987). We shall also discuss its implications for Quantitative Genetics.
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II. RELATING QUANTITATIVE TRAITS AND GENOTYPES.

Let us focus on the fitness which is the most important example of “quantitative trait”, although everything we
shall say about “fitness landscapes” in this section, applies directly to any quantitative phenotype. A fitness landscape
is a metaphor for a map from the high dimensional space of genotypes to expected reproductive success. While the
map itself is unambiguous, several different ways of parameterizing fitness landscapes with alleles and groups of alleles
have been proposed (Barton and Turelli, 1991; Hansen, 2006; Hansen and Wagner, 2001; Weinberger, 1991).

Consider a haploid genome of L loci with two alleles each, such that a genotype is uniquely characterized by L
binary variables g = {s1, . . . , sL}. We choose si ∈ {−1, 1}, i = 1, . . . , L instead of si ∈ {0, 1} (more commonly
used in population genetics literature), since the symmetric choice simplifies the algebra below. (The relation between
representations can be found in Appendix B, a short glossary of population genetics terminology is given in Appendix
A.) Functions of the genotype, e.g. as the population distribution, fitness, or any other quantitative trait, live therefore
on a L-dimensional hypercube. Any such function on the hypercube can be decomposed into a sum of monomials in
si

F (g) = F̄ +
∑
i

fisi +
∑
i<j

fijsisj +
∑
i<j<k

fijksisjsk + · · · , (1)

where the first sum represents independent contribution of L single loci, the second sum which runs over all L(L−1)/2
pairs of loci represents contribution of pairs and the higher order terms account for the effect of each and every possible
subgroups of loci. The first order contribution fi defines the additive effect of locus i which is independent of all other
loci considered. Higher order terms which include locus i define the genetic background dependence of the effect of
si allele. Collectively, terms of order higher than one represent genetic interactions also known as “epistasis”. The
contribution of each locus or subgroup of loci is determined by unbiased (i.e. each genotype enters with weight 2−L)
averaging over the remainder of the genome: thus the coefficients are given by

F̄ = 2−L
∑
g

F (g), fi = 2−L
∑
g

siF (g), fij = 2−L
∑
g

sisjF (g), . . . (2)

One easily convinces oneself that plugging Eq. (1) into the expressions in Eq. (2) reduces to the desired coefficients.

In total, there are 2L coefficients f
(k)
i1,...,ik

, as it has to be for an exact representation of a function on a hypercube.

In fact, the coefficient of the expansion of F (g) into monomials is nothing but the Fourier transform of the original
function on the hypercube, which was used in the context of genotype-fitness maps in Hordijk et al. (1998); Stadler
and Wagner (1998); Weinberger (1991). In addition to this genetic contribution to the trait, the trait value of a given
individual will also depend on environmental (and epigenetic) factors which are not modeled here.

It proves very useful to define a “density of states” ρ(F ) = 2−L
∑
g δ(F − F (g)), where δ(F ) is a Dirac delta-

function. The fraction of genotypes with fitness in the interval [F, F +δF ] is then given by
∫ F+δF

F
dF ′ρ(F ′). Provided

F (g) receives contributions of very many terms of similar magnitude in Eq. 1, the Central Limit Theorem will apply
making the density of states approximately Gaussian in shape. The width of this Gaussian is given by the (square
root of the) variance of F (g) over the hypercube:

σ̄2 = 2−L
∑
g

(F (g)− F̄ )2 =
∑
i

f2
i +

∑
i<j

f2
ij +

∑
i<j<k

f2
ijk + ... (3)

This simple decomposition of variance is the equivalent of the Parseval’s theorem for the Fourier transform. Note
that this variance is an intrinsic property of the fitness landscape completely independent of any population that may
be evolving on it. It should not be confused with the population variance that we will discuss later. We shall use σ̄
as a measure of selection strength.

The sums in Eq. (3) for σ̄ can be interpreted as the power spectrum of the F (g). A falling or rising power spectrum
gives rise to qualitatively different landscapes: If most of the variation of the fitness function were captured by the
first order terms, the landscape would be smooth and simple. If higher order terms dominate the fitness variance,
the landscape is multi-peaked and rugged. The properties of smooth versus rugged landscapes (parameterized in the
manner of Eq. (1) ) has been a subject of extensive study in statistical physics as it relates to the theory of spin-glasses
(Mezard et al., 1987). It is known that the key consequences of complexity of the general landscape, appear already
in the class of functions involving only pairwise interactions (a.k.a. the Sherrington-Kirkpatrick model (Sherrington
and Kirkpatrick, 1975)) (Mezard et al., 1987). Here for simplicity we shall consider only pairwise interactions. (An
alternative instructive simplification would be to consider F (g) defined by a fixed random function on the hypercube,
known in population genetics as the “house-of-cards” model (Kingman, 1978) or NK-models Kauffman and Weinberger
(1989) and in physics as a “random energy” model (Derrida, 1981).)
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Before moving on to population dynamics, it is instructive to discuss the implication of the combinatorial explosion
of higher order interactions: In principle there are

(
L
k

)
interactions of order k, a number which increases with L as

Lk. Hence increasing the number of loci without changing the statistics of the coefficients would shift the power
spectrum towards higher order, making the function more rugged. It seems more likely that the interactions are
sparse with the number of “partners” of a typical locus not growing in proportion to the total number of loci: In
particular one may posit that each locus interacts with a finite number of other loci, independent of L and set all
other coefficients to zero. Unfortunately, despite some recent progress (Brem and Kruglyak, 2005; Ehrenreich et al.,
2010), we still know very little about generic structure of genotype-phenotype maps. One must also be aware of the
fact that, because of selection, statistics of genetic interactions observed among co-segregating polymorphisms within
a breeding population may be quite different from that for a random set of loci or a for polymorphisms created by
crossing two isolated populations (Jinks et al., 1966). Indeed, most immediate evidence for epistasis is provided by the
“outcrossing depression”: suppression in the fitness of progeny issuing from a cross of diverged strains (Jinks et al.,
1966; Seidel et al., 2008).

III. DYNAMICS OF THE GENOTYPE DISTRIBUTION.

Selection, mutation, and recombination operate on individuals and change the distribution of genotypes, P (g, t), in
the population. The fitness F (g) of a genotype g is defined as the expected reproductive success, i.e. the rate at which
the proportion of a genotype increases or shrinks in the population due to (natural or artificial) selection. During the
time interval ∆t, selection changes the distribution of genotypes according to

P (g, t+ ∆t) =
e∆tF (g)

〈e∆tF 〉
P (g, t) (4)

where 〈e∆tF 〉 =
∑
g e

∆tF (g)P (g, t) denotes the population average. The genetic diversity that selection acts upon is
due to mutations, which change the genotype distribution as follows

P (g, t+ ∆t) = P (g, t) + ∆tµ

L∑
i=1

[P (Mig, t)− P (g, t)] . (5)

Here Mig is a shorthand for genotype g with si replaced by −si. Despite the importance of mutations for generating
polymorphisms and maintaining genetic diversity in the long run, the effect of mutation on the dynamics of significantly
polymorphic sites can be neglected if mutation rates are much smaller than selection coefficients.

In addition to selection and mutation, the dynamics of the genotype distribution in sexual populations are driven
by mating and recombination. Gametes are formed during meiosis crossing over homologous parental chromosomes.
Assuming random pairing of gametes and outcrossing with rate r, the genotype distribution changes during recombi-
nation as follows:

P (g, t+ ∆t) = (1−∆tr)P (g, t) + ∆tr
∑
{ξi}{s′i}

C({ξ})P (g(m), t)P (g(f), t) . (6)

The first term accounts for those individuals that did not outcross during the ∆t time interval. In the event of
outcrossing, a new genotype is formed from genetic material of the mother with genotype g(m) and a father with
genotype g(f). The novel recombinant genotype g inherits a subset of his loci from the mother and the complement
from the father, which in Eq. (6) is described by the set of random variables {ξi}. If ξi = 1, gene i is inherited from

the mother, if ξi = 0 from the father. Using this notation, the maternal genotype is s
(m)
i = ξisi + (1 − ξi)s′i and

equivalently the paternal genotype s
(f)
i = (1−ξi)si+ξis

′
i. The part of the maternal and paternal genome which is not

passed on to the offspring, {s′i}, is summed over. Each particular realizations of {ξi}, i.e. a pattern of crossovers, has
probability C({ξ}), which depends on the crossover rates between different loci. In addition to the summation over all
{s′i}, we have to sum over possible crossover patterns {ξi}. A very similar notation was used in Christiansen (1990).
While our presentation so far was completely general, dealing with diploid genomes inflates the required book-keeping
as we proceed with the analysis. Since our goal is to present the key effects and ideas in the simplest possible form,
we shall from here on restrict to considering only haploids, two of which recombine upon mating producing a haploid
offspring. Although this model is chosen for simplicity sake, it is sufficient to describe diploids in the absence of
dominance. It also describes haploid yeast going through mating/sporulation/germination cycle or the population
genetics of many RNA viruses like HIV and Influenza.
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Provided selection is weak (∆tF (g)� 1), we can use a continuous time description of the dynamics.

d

dt
P (g, t) =(F (g)− 〈F 〉)P (g, t) + µ

L∑
i=1

[P (Mig)− P (g)]

+ r
∑
{ξi}{s′i}

C({ξ})
[
P (g(m), t)P (g(f), t)− P (g′, t)P (g, t)

] (7)

This equation describes the dynamics of the genotype distribution in the limit N →∞ where each genotype is sampled
by enough individuals to neglect sampling noise which would arise during reproduction. This stochastic component
to the dynamics of the genotype distribution is known as “random genetic drift”. We shall discuss random drift
in Section VI. Our focus here will be on the interplay between selection and recombination, which dominates the
behavior of Eq. (7).

Instead of specifying P (g, t) for every g, P (g, t) can be parameterized by its cumulants. The cumulants of first and
second order are defined as χi = 〈si〉 and χij = 〈sisj〉 − 〈si〉〈sj〉, which are related to allele frequencies and pairwise
linkage disequilibria (see Table II). In total there are 2L − 1 cumulants, with higher order ones, χij...k, more easily
defined via the cumulant generating function (McQuarrie, 1973). However, only the first and second order cumulants
will be needed in the present context.

To obtain dynamical equations for χi, we multiply Eq. (7) by si and sum over all possible genotypes. One finds

χ̇i = 〈si[F (g)− 〈F 〉]〉 − 2µ〈si〉 , (8)

where we have used Misi = −si and used the notation χ̇i for total derivative with respect to time. The dynamics
of χi do not depend explicitly on the recombination rate, which is intuitive since recombination does not create or
destroy alleles. In order to evaluate 〈siF (g)〉 in Eq. (8) we need to know higher order cumulants, i.e. we are faced
with a hierarchy of cumulant equations.

In contrast to first order cumulants, the dynamics of higher order cumulants depend explicitly on recombination,
which has the tendency to destroy associations between alleles and drives higher order cumulants to zero. To write
down an equation for the dynamics of the second order cumulants, χij = 〈sisj〉 − χiχj , we have to evaluate d

dt 〈sisj〉,
which explicitly depends on recombination. Evaluating the recombination term only, we find

r
∑
{ξi}

C({ξ})
∑
g,g′

sisj

[
P (g(m), t)P (g(f), t)− P (g′, t)P (g, t)

]
= −rcijχij (9)

where cij is the probability that loci i and j derive from different parents: cij =
∑
{ξ} C({ξ})[ξi(1− ξj) + (1− ξi)ξj ].

To arrive at this result, we substituted si = ξis
(m)
i + (1− ξi)s(f)

i (analogously for sj), and averaged over the maternal
and paternal genomes. The second term evaluates simply to r〈sisj〉. This result holds more generally for central
moments of the genotype distribution (Barton and Turelli, 1991). Together with selection and mutation, we find (for
i 6= j)

χ̇ij = 〈(si − χi)(sj − χj)(F (g)− 〈F 〉)〉 − 4µχij − rcijχij (10)

We see that selection drives χij away from zero, while χij relaxes though mutation and recombination. In absence of
selection P (g, t) tends to a steady state of “linkage equilibrium” (LE) with vanishing cumulants χij (for i 6= j) implying
complete decorrelation of alleles at different loci corresponding to factorization of the genotype distribution: P0(g) =∏L
i=1 pi(si). It is easy to see that the recombination term in Eq. (7) vanishes whenever P (g) = P0(g). In Section V, we

will, starting from P0(g), develop the Quasi-Linkage-Equilibrium (QLE) approximation by systematically accounting
for small linkage disequilibria (χij).

IV. TRAIT DISTRIBUTIONS AND THE DYNAMICS OF POPULATION AVERAGES

In most cases, P (g, t) cannot be observed directly. Instead, the subject of quantitative genetics are distributions
of traits in the population. Trait distributions can be obtained from genotype distributions by projection. The
probability of finding in the population an individual with fitness (or any other trait) in the interval [F, F + ∆F ] is
given by

p(F, t) =
∑
g

δ(F − F (g))P (g, t) (11)
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where δ(F ) is the Dirac delta-function (
∫
dFδ(F ) = 1). Applying this projection to Eq. (7) yields an equation for the

dynamics of the trait distribution. Before addressing the dynamics of traits in sexual populations, it is instructive to
consider the dynamics of the fitness distribution p(F, t) in absence of mutation and recombination, in which case one
obtains simply

d

dt
p(F, t) = [F − 〈F 〉]p(F, t) (12)

where 〈F 〉 =
∫
dFFp(F, t). Multiplying this equation by F and integrating over F (i.e. the 1st moment of this

equation) yields Fisher’s “Fundamental Theorem” in the asexual case.

d

dt
〈F 〉 = 〈[F − 〈F 〉]2〉 = σ2 (13)

Evidently this is just the 1st in the hierarchy of infinitely many moment equations that characterize the dynamics of
p(F, t) given explicitly by Eq. (12). The 2nd moment expresses the dynamics of σ2 in terms of the 3rd moment, etc.
This hierarchy of equations is not closed, yet under certain conditions higher moments may be suppressed making
the σ2 a slowly varying function of time. One notes that Eq. (12) has a Gaussian traveling wave solution p(F, t) =
C exp[−(F − vt)2/2v] with an arbitrary constant variance σ2 = v setting the rate of fitness growth d

dt 〈F 〉 = v in
agreement with Eq. (13). A traveling wave with constant speed requires that genotypes with arbitrarily high fitness are
populated with at least one individual, which requires an infinitely large population with infinitely many polymorphic
loci with limits taken in this order. Otherwise genetic diversity disappears and adaptation stalls. The evolution of
the shape of the fitness distribution in finite populations has been studied in the context of Genetic Algorithms by
Prügel-Bennett and Shapiro (1994). Prügel-Bennett and Shapiro study the effect of selection and recombination on
the cumulants of the fitness distribution and observe how the fitness variation vanishes as the population condenses
into a local fitness maximum. To prevent this condensation, new variation has to be constantly supplied by mutation.
Quite generally σ is determined by the balance generation of genetic variation through mutations or recombination and
its removal be selection and drift, which requires careful stochastic treatment (Desai and Fisher, 2007; Hallatschek,
2011; Neher et al., 2010; Rouzine and Coffin, 2005; Rouzine et al., 2003; Tsimring et al., 1996).

One can also consider the dynamics of an arbitrary trait G(g) different from fitness. In analogy to Eq. (11), we can
study the joint distribution, p(F,G, t) of this trait with fitness. The population average of the trait obeys

d

dt
〈G〉 = 〈GF 〉 − 〈G〉〈F 〉 = Cov(F,G)P (g) (14)

i.e. its rate of change is given by its covariance with fitness (Price, 1970). This statement is also known as the
“secondary theorem” of natural selection (Robertson, 1966).

With mutation and recombination, the dynamics of trait means are no longer that simple. To evaluate the mutation
and recombination terms, we utilize the orthogonal expansion of the fitness function in Eq. (1). Restricting ourselves
to pairwise interactions, we can use Eqs. (8) and (9) to obtain

d

dt
〈F 〉 = σ2 − µ∆µ − r

∑
i<j

cijfijχij , (15)

where ∆µ is the average loss in fitness due to mutation. The latter can be calculated by observing that each moment
decays through mutation with rate 2µk, where k is the order of the moment.

∆µ = µ

2
∑
i

fiχi + 4
∑
i<j

fij(χiχj + χij) + · · ·

 (16)

Higher moments decay faster because they have a greater mutation target. The second term in Eq. (15) is the loss
in fitness through recombination, which reflects the tendency of recombination to factorize the genotype distribution
such that contributions like fijχij to 〈F 〉 decay with rate rcij . We will later see that the previous form of Fisher’s
theorem can be recovered by a suitable definition of an additive fitness variance. To do so, however, we have to
understand how the genotype distribution evolves under selection and recombination.

V. BEYOND LINKAGE EQUILIBRIUM: QUASI LINKAGE EQUILIBRIUM

We have already seen that without selection or without epistasis, P (g) distribution will relax to a product of
independent distributions at different loci: the linkage equilibrium state. Next we shall account for the correlations
between loci induced by selection. For simplicity we shall omit the mutational contribution, which we shall restore
once we understand the basis of Quasi Linkage Equilibrium (QLE).
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A. QLE: A perturbation expansion at high recombination rates

If selection on the time scale of recombination is weak, i.e. σ̄ � r, the induced correlation is also weak and can
be calculated using perturbation theory (Barton and Turelli, 1991; Kimura, 1965). To this end, we parameterize the
genotype distribution as follows

logP (g, t) = Φ(t) +
∑
i

φi(t)si +
∑
i<j

φij(t)sisj , (17)

which is the already familiar Fourier representation of functions on the genotype space. The factorized distribution
P0(g) would correspond to the coefficients, φij , of all multilocus contributions being zero. The second order terms
capture (to the leading order) the correlations induced by selection and (in the limit under consideration) are assumed
to be small. The genotype independent term Φ(t) is fixed by the normalization of the probability distribution.

e−Φ({φ}) =
∑
g

exp

∑
i

φisi +
∑
i<j

φijsisj + ...

 (18)

and acts as the generator of the cumulants via

χi = − ∂Φ

∂φi
, χij = − ∂2Φ

∂φi∂φj
(19)

The generating function Φ is evaluated perturbatively for small φij in the Appendix C yielding

χi ≈ tanh(φi) +
∑
j 6=i

φij(1− tanh2(φi)) tanh(φj) (20)

χij ≈ (1− χ2
i )(1− χ2

j )φij for i 6= j (21)

χii = 1− χ2
i (22)

which is correct to the leading order in |φij |. The distribution given by Eq. (17) may be thought of as a maximum
entropy distribution constrained to have certain first and second order cumulants: Parameters φi and φij are the
Lagrange multipliers that impose the constraints.

Let us rewrite Eq. (7) as an equation for the dynamics of logP (g) which yields

Φ̇ +
∑
i

φ̇isi +
∑
i<j

φ̇ijsisj = F (g)− 〈F 〉+ r
∑
{ξi}{s′i}

C({ξ})P (g′)

[
P (g(m))P (g(f))

P (g)P (g′)
− 1

]
≈ F̄ +

∑
i

fisi +
∑
i<j

fijsisj + r
∑
i<j

cijφij [(si〈sj〉+ 〈si〉sj)− (sisj + 〈sisj〉)]
(23)

where the recombination part has been evaluated approximately by expanding the exponential that defines P (g) (see
Appendix C). We can now collect terms with the same monomials in si to obtain the equations governing the time
evolution of φi and φij :

φ̇i = fi + r
∑
j 6=i

cijφij〈sj〉 (24)

φ̇ij = fij − rcijφij (25)

At large crossover rates rcij , the φij rapidly approach a steady-state φij =
fij
rcij

. This has to be contrasted with the

behavior in absence of recombination, in which case φij would grow linearly as fijt. Recombination prevents effective
selection on interactions. Instead, the higher order contributions to fitness affect the dynamics of φi after averaging
over possible genetic backgrounds: Substituting the steady state relation into the equation for φi yields

φ̇i = fi +
∑
j 6=i

fijχj = f̂i . (26)
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where we have defined f̂i = fi +
∑
j fijχj which is the effective strength of selection acting on locus i in linkage

equilibrium. It is obtained from the general expression for F (g) in Eq. (1) by replacing sj → χj and differentiating
with respect to χi (and is truncated here at second order because we assumed, for simplicity, that genetic interactions
are limited to that order).

Converting φs to χs using the relation (20), we find χ̇i = (1−χ2
i )φ̇i, correct to the leading order. For the discussion

below, it will be useful to derive equations for χi and χij also to the sub-leading order

χ̇i =
∑
j

χij

[
f̂j − χifij

]
+ σ̄O(σ̄2/r2) (27)

χij =
(1− χ2

i )(1− χ2
j )fij

2f̂iχi + 2f̂jχj + rcij
+O(σ̄2/r2) for i 6= j

In QLE, correlations χij between loci (i 6= j) are determined by the balance between epistatic selection and re-
combination. (Note, in contrast, the diagonal elements χii = 〈s2

i 〉 − 〈si〉2 = 1 − χ2
i are determined by the allele

frequencies.)
Wright (1931) showed that in linkage equilibrium, the dynamics of allele frequencies are driven by the gradient in

mean fitness. The result can be generalized to include correlations between loci arising in QLE. Starting with the
exact equation for the allele frequency dynamics and using our parameterization of P (g) via the “fields” φi given in
Eq. (17), we find

χ̇i = 〈siF 〉 − χi〈F 〉 = ∂φi〈F 〉 ≈
∑
j

∂φiχj∂χj 〈F 〉 (28)

=
∑
j

χij∂χj 〈F 〉

where we have used the chain rule of differentiation and the fact that
∂χj
∂φi

= χij following directly from Eq. (19). The

correlation matrix χij acts as a mobility matrix for allele frequencies. The non-diagonal entries of order σ̄/r imply
that selection on locus j, via the correlation with locus i, affects the rate of change of χi. Eq. (28) describes the
dynamics of allele frequencies as the population ascends Wright’s “adaptive landscape”. While allele frequencies still
evolve to maximize 〈F 〉, their dynamics now are coupled by correlations captured in the off-diagonal terms of χij .

The key point emerging from the analysis of the weak selection/rapid recombination limit is the remarkable simplic-
ity of multi-locus dynamics: the 2L ordinary differential equations for all cumulants or equivalently for all genotypes
are reduced to L differential equations describing the dynamics of allele frequencies. Higher order cumulants are
slaved to allele frequencies and can be obtained by solving algebraic equations defining the L dimensional quasi-
linkage-equilibrium manifold. The distribution of genotypes in the population can therefore be parameterized by
time-dependent allele frequencies, with all other features of the distribution constrained by the QLE equations. In
mathematical terms, the dynamics of genotype distribution are approximately reducible to the dynamics on the “center
manifold” formed by the set of allele frequencies (Guckenheimer and Holmes, 1997). Within the QLE approximation,
population averages of any trait G(g) can be parameterized by {χ1(t), . . . , χL(t)} and the time-derivative of the trait
mean is therefore given by

d

dt
〈G〉 ≈

∑
i

∂χi〈G〉∂tχi(t) =
∑
ij

χij∂χi〈G〉∂χj 〈F 〉 − 2µ
∑
i

χi∂χi〈G〉 (29)

where we have restored the contribution of mutations through its effect on allele frequencies as it appeared in Eq. (8).
This result has a very simple interpretation: The rate of change of the trait mean is the product of the rate of change
of allele frequencies through selection and the susceptibility of the trait mean to the allele frequency. The second term
accounts for the effect of mutation on the trait mean. Since the first term is the additive covariance between fitness
and the trait G, this equation is the analog of Eq. (14) in a recombining population. The QLE approximation breaks
down when recombination is not sufficiently rapid to confine the genotype distribution to the L dimensional manifold
defined by quasi-steady correlations between loci. This breakdown will be discussed in more detail below.

B. Additive genetic variance and Fisher’s theorem in QLE

Fisher’s theorem in sexual populations posits that the rate of mean fitness increase is equal to the additive variance.
We will now discuss how Fisher’s theorem emerges from Eq. (15) and how it compares with Eq. (29) which obviously
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can be used to calculate d〈F 〉/dt. Additive variance is typically defined as the variance captured by a linear model of
the form

FA(g) = a0 +
∑
i

aisi (30)

where the coefficients are determined by minimizing

σ2
I =

∑
g

(FA(g)− F (g))2P (g, t) . (31)

The remaining variance σ2
I is commonly called epistatic or interaction variance. Minimization yields a0 = 〈F 〉−

∑
i aiχi

with ai determined by the linear equation∑
j

χijaj = 〈siF 〉 − χi〈F 〉 = ∂φi〈F 〉 (32)

We have seen the right hand side of this equation already in Eq. (28): it is the contribution of selection to χ̇i. In the
high recombination limit, ∂φi〈F 〉 ≈

∑
j χij∂χj 〈F 〉. Hence the additive fitness coefficients (defined by linear regression)

are ai = ∂χi〈F 〉, which is accurate to order σ̄/r. The additive variance therefore is

σ2
A =

∑
ij

aiχijaj ≈
∑
ij

χij∂χi〈F 〉∂χj 〈F 〉+ σ̄2O(σ̄2/r2) (33)

Recalling the QLE equation for mean trait dynamics, Eq. (29), and using fitness as a trait, we have

d

dt
〈F 〉 ≈

∑
ij

χij∂χi〈F 〉∂χj 〈F 〉 − 2µ
∑
i

χi∂χi〈F 〉 (34)

and comparing to the definition of σ2
A we arrive at the generalized Fisher’s “Fundamental Theorem”

d

dt
〈F 〉 = σ2

A − µ∆µ +O(σ̄4/r2) (35)

which limits growth of fitness to the additive variance. Comparing to the general expression for mean fitness given
before in Eq. (15) we see that the loss in fitness due to disruption of favorable combinations of alleles though
recombination exactly cancels the epistatic σ2

I = σ2 − σ2
A part of total variance. In other words, in a sexually

reproducing species the uncertainty in the phenotype of the offspring in relation to that of its parents limits the effect
of selection to the additive component of variance. The latter is that genetic component of the trait that “survives”
reshuffling of genes by reassortment and recombination which depends on the genetic distance to the mate. Hence,
this decomposition of genetic variation in additive and non-additive components is explicitly population dependent.

One must of course remember that the generalized Fisher’s law as stated only holds in this rapid recombination/weak
selection limit and only after correlations have relaxed to their steady QLE values. During the initial transient towards
QLE or at low recombination rates mean fitness can exhibit very different dynamics. The meaning of Fisher’s theorem
has been subject to extensive discussion in the literature (Edwards, 1994; Ewens, 1989; Feldman and Crow, 1970;
Frank and Slatkin, 1992; Price, 1972) caused by Fisher’s insistence that his statement was exact. Price (1972) in
particular suggested that Fisher’s intention was to describe not the total rate of change of mean fitness, but only
the “partial rate” due to change in allele frequencies: i.e. just 1st term on the r.h.s. of Eq. (29). The “theorem”
would in that case become an exact statement, but not a very useful one! Following Kimura (1958) and Nagylaki
(1993) our Eq. (35) sticks to d〈F 〉/dt so that the generalized Fisher’s theorem is an unambiguous, but approximate
statement. The above analysis assumed that the population is subject to a constant fitness function and the mean
fitness provides a useful measure of adaptation. If the fitness function itself depends on time, the increase in mean
fitness due to adaptation of the population is superimposed with the dynamics of the fitness function. In the latter
case, an unambiguous measure of adaptation, the fitness flux, can be defined in analogy to fluctuation theorems of
non-equilibrium statistical mechanics (Mustonen and Lässig, 2010).

The off-diagonal terms in the additive variance aiχijaj have interesting implications for the evolution of recom-
bination: if two alleles that are selected with the same sign (aiaj > 0) are anti-correlated (χij < 0), the rate of
adaptation is smaller than it would be in linkage equilibrium. This is the basis for the often made statement that
recombination accelerates adaptation by reducing negative linkage disequilibria and thereby increasing the additive
variance (Barton and Otto, 2005). There is, however, an additional effect of recombination on adaptation that is not
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captured by deterministic multilocus dynamics and is likely to be more important: Recombination greatly increases
the likelihood that a novel beneficial mutation establishes and ultimately fixates in the population (Barton, 1995b;
Fisher, 1930; Muller, 1932; Neher et al., 2010). Thereby the number of simultaneously polymorphic loci is increased,
which in turn increases the fitness variance and speeds up adaptation. The reason for this is again that recombination
breaks down negative linkage disequilibria (a tendency of beneficial alleles to be anti-correlated), which are generated
by chance and amplified by selection (Barton and Otto, 2005). Analysis of this phenomenon requires going beyond
QLE (see below).

VI. FINITE POPULATION DRIFT AND WRIGHT’S MUTATION/SELECTION/DRIFT EQUILIBRIUM.

So far our formulation of the genotype dynamics Eq. (7) and the dynamics of allele frequencies Eq. (27) was
deterministic, i.e. we neglected random drift. Random drift is a consequence of the stochastic nature of birth and
death in a finite population of size N . In the simplest models of stochastic population genetics – called Fisher-Wright
models – stochasticity is introduced by resampling the population from a multinomial distribution parameterized with
the current genotype (or gamete) frequencies each generation.

We have seen above that the genotype frequency distribution can be parameterized by allele frequencies when
recombination is rapid and we shall discuss now how resampling of genotypes leads to stochastic contributions to
the dynamics of allele frequencies and cumulants. For alleles that are present in large numbers, the relative sizes of
fluctuations due to resampling are small and random drift can be accurately described by a diffusion approximation
(Kimura, 1964). To derive a diffusion equation for allele frequencies, we generalize the ordinary differential equations
Eq. (27) to stochastic differential equations (Langevin equations (Gardiner, 2004)). For a finite time step ∆t, one has

χi(t+ ∆t) = χi(t) + ∆t

∑
j

χij∂χj 〈F 〉 − 2µχi

+
√

∆tζi(t) (36)

χij(t+ ∆t) = χij(t) + ∆t
[
(1− χ2

i )(1− χ2
j )fij − rcij

]
+
√

∆tζij(t) (37)

where we have neglected terms much smaller than rcij in the relaxation rate of χij . ζi(t) and ζij(t) are white noise
terms with zero mean and a covariance matrix determined by the multinomial sampling of the genotypes. One finds

〈ζi(t)ζj(t′)〉 =
χij
N
δ(t− t′) (38)

〈ζij(t)ζij(t′)〉 ≈
(1− χ2

i )(1− χ2
j )

N
δ(t− t′) (39)

while other covariances are of order σ̄/r or smaller, see Appendix D. The joint stochastic dynamics of allele frequencies
and the correlation between loci has been studied by Ohta and Kimura (1969) using a two-locus model. Here, we
study a multi-locus model making the simplifying assumption that the recombination is faster than all other processes.

In this case, the 2nd order cumulants relax much faster than allele frequencies change and we can solve the equation
for χij assuming fixed χi. The solution can be decomposed into a deterministic component due to the competition
between epistatic selection and recombination and a stochastic component.

χij(t) =
fij(1− χ2

i )(1− χ2
j )

rcij
+ δχij (40)

The deterministic component is the familiar QLE value from Eq. (27), while the stochastic component δχij has an

auto-correlation 〈δχij(t)δχij(t + ∆t)〉 =
(1−χ2

i )(1−χ
2
j )

2Nr e−r∆t, see Appendix D. We will now use this result to study
Langevin equation for χi. We have to distinguish the case where the deterministic component to χij dominates over
the stochastic term or vice versa. In order to compare the stochastic to the deterministic term, we have to average

the former over the time scale of the dynamics of χi given by the inverse of ∂〈F 〉
∂χi
≈ f̂i. Recalling that the equilibrium

value of the χi ≈ 1 − µ/f̂i, we find that the deterministic contribution to χij dominates if Nµ � 1 and fij � µ. In
the opposite limit, the stochastic contribution δχij will affect the dynamics of χi more strongly than the deterministic
one. We will now show how the equilibrium distribution of allele frequencies is affected by correlation between loci in
these two cases.
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A. Wright’s equilibrium in the QLE approximation

Assuming we can neglect the stochastic contribution to χij , the Langevin equation for the χi (interpreted in the

Îto sense) corresponds to the following forward Kolmogorov equation for the dynamics of the probability distribution
of allele frequencies by Q({χi}, t) (Gardiner, 2004)

∂tQ({χi}, t) =
∑
i

∂χi

 1

2N

∑
j

∂χj (χijQ({χi}, t)) +Q({χi}, t)

2µχi −
∑
j

χij∂χj 〈F 〉

 (41)

This multilocus version of the diffusion equation for allele frequencies in linkage equilibrium (no correlations) appears
already in Kimura (1955). It has a steady solution where all probability flux vanishes, i.e. where the term in brackets
is zero for each i. In complete linkage equilibrium, the matrix χij is diagonal and different allele frequencies decouple.
One obtains the equilibrium distribution

Q({χi}) = Ce2NF ({χi})
∏
i

(1− χ2
i )

2Nµ−1 , (42)

where F ({χi}) is the mean fitness evaluated in linkage equilibrium obtained by replacing each si by its moment χi in
Eq. (1). The term e2NF ({χi}) is analogous to the contribution of energy to a Gibbs measure, while

∏
i(1− χ2

i )
2Nµ−1

plays the role of an entropy. Note that for 2Nµ < 1, the distribution is singular at |χi| = 1. In the opposite case
2Nµ > 1, Q({χi}) vanishes if any of the |χi| = 1. Instead Q({χi}) has a maximum in the interior of the hypercube
defined by |χi| < 1.

The corresponding solution for QLE, where χij has small but steady off-diagonal entries is derived in Appendix D
with the result:

Q({χi}) = Ce
2N〈F 〉+4Nµ

∑
i<j

fijχiχj
rcij

L∏
i=1

(1− χ2
i )

2Nµ−1 (43)

The genotype distribution assumes this exponential (Boltzmann) form ∼ eN〈F 〉 since the mobility matrix χij is pro-
portional to the auto-correlation of the genetic drift. Eq. (43) provides a systematic extension of Wright’s equilibrium
to QLE, which appears to be a new result.

B. Wright’s equilibrium with stochastic linkage disequilibrium

In absence of epistasis or in cases where selection is weak or comparable to the strength of genetic drift (diffusion
constant), the deterministic expectation for χij is small compared to its fluctuations. The coupling between different
allele frequencies in Eq. (36) has therefore fluctuating sign and acts as an additional noise source with auto-correlation
time (rcij)

−1. Such an increased noise level increases the diffusion constant in the Fokker-Planck equation for each
of the χi by a factor

N

Ne
= 1 +

1

2

∑
i 6=j

(1− χ2
j )

(
1

rcij

∂〈F 〉
∂χj

)2

(44)

This increase in diffusion constant is often phrased as a reduction in effective population size Ne and is known as a
manifestation of the Hill-Robertson effect (Hill and Robertson, 1966). Note that the correction has the structure of
the additive variance in fitness where each term is compared to the square of the recombination rate between the loci
i and j. This result was derived in the context of fixation probabilities of novel mutations in Barton (1995b). It has
been shown that this effective increase in the diffusion constant through stochastic correlations of loci can select for
increased recombination rates (Barton and Otto, 2005).

C. Equilibration towards a steady state

The approach to the equilibrium distribution is governed by the smallest non-zero eigenvalue of Eq. (41). For
2Nµ > 1 and smooth fitness landscapes, this relaxation rate is governed by the larger of µ and the scale of selection
on individual loci. The corresponding time scales can be very long. Furthermore, if different parts of sequence
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space are separated by fitness valleys (“energy barriers”), relaxation to the steady state can take exponentially long
(Weissman et al., 2010).

Similar equations for the distribution of allele frequencies apply in the context of spatially structured populations,
in which case the role of mutation is played by migration of individuals. The latter problem was the subject of work
by Wright (1932). Migration rates and the associated influx of foreign alleles are often much larger than mutation
rates and rapid equilibration is plausible.

VII. BREAKDOWN OF QLE

QLE greatly simplifies the dynamics of the genotype distribution, but the perturbation theory nature leaves one
with the question about the range of its validity. In particular, we know from Statistical Physics that Gibbs measures
of the form of Eq. (17) can lead to a so-called glass transition where the structure of the distribution changes
qualitatively. Below the glass transition, different realizations of the system have a non-vanishing probability to be
(largely) identical, which is quantified by the overlap distribution (Parisi order parameter, Mézard and Montanari
(2009)). A related transition in which the population condenses into a small number of genotypes is driven by the
competition between epistasis and recombination. It occurs already in the deterministic mean field setting and is
discussed below in Section VII.A. QLE can also become unstable at low recombination rates even in the absence of
epistasis because of the discreteness of contributions of individual loci in a finite genome. The instability in that case
is driven by fluctuations due to finite population size and is discussed in Section VII.B.

A. Infinite N and L limit: Alleles vs. Genotypes

To gain some heuristic insight into the range of validity of the perturbation expansion in σ̄/r, it is useful to
study the following coarse-grained “quantitative genetic” version of QLE which yields an explicit criterion for the
validity of QLE (Neher and Shraiman, 2009). Instead of following the entire genotype distribution, consider the joint
distribution P (A,E, t) of additive A and epistatic E contributions to fitness defined via A = FA(g) (comp. Eq. (30))
and E = F − A. Hence additive and epistatic contributions are defined with reference to the current distribution of
genotypes. The joint distribution of A and E evolves according to

∂tP (A,E, t) = (A+ E − 〈A〉 − 〈E〉)P (A,E, t) + r

(
ρ(E)

∫
dE′ P (A,E′, t)− P (A,E, t)

)
(45)

where 〈A〉 and 〈E〉 are the mean additive and epistatic fitness in the population. Here we have assumed that the
epistatic fitness of novel recombinants is independent of its parents and given by a random sample from the density
of possible epistatic fitness values ρ(E) (the “house-of-cards” model, (Kingman, 1978)). We assume ρ(E) to be a
Gaussian with the variance equal to σ2

I - the epistatic component of fitness variance defined in Eq. (31). Additive
fitness of recombinants is a random sample from the current distribution of additive fitness in the population, i.e. the
marginal

∫
dE′ P (A,E′, t). The model does not include finite population size effects and assumes that both A and E

are from a continuous distribution. The latter implies that the number of loci L that contribute to fitness is very large,
while the individual contributions of loci are small (comp. Section II). In this sense, it is a deterministic mean-field
model.

Equation (45) has a factorized solution P (A,E, t) = θ(A, t)ω(E) with

θ(A, t) =
1√

2πσ2
A

e
− (A−〈A〉)2

2σ2
A where

d

dt
〈A〉 = σ2

A (46)

ω(E) =
rρ(E)

r + 〈E〉 − E
where 〈E〉 =

∫
dE Eω(E)

The mean epistatic fitness is determined by enforcing the normalization of ω(E), i.e.
∫
dE ω(E) = 1. Note that this

solution is a QLE solution: Fitness increases with a rate given by the additive variance, while the epistatic contribution
to fitness is steady with a magnitude controlled by recombination. Unlike Eq. (27), Eq. (46) implies a condition on r
and the density of states: ρ(E) has to vanish for E ≥ r+ 〈E〉. Otherwise, ω is not normalizable. The density of states
ρ(E) is typically of Gaussian form, and given 2L states has its maximum at Emax ≈ σ2

I

√
2L log 2 (if N � 2L, as will

be generically the case, Emax ≈ σ2
I

√
2 logN). Hence QLE is expected to break down at rc ≈ Emax − 〈E〉 ≈ Emax.
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FIG. 2 Genetic interactions and the breakdown of QLE. Panel A shows the range of validity of QLE as a function of σ̄/r and the
heritability, i.e. the ratio of additive variance to the total fitness variance. Below the transition line, strong linkage equilibrium
is expected and selection operates on genotypes rather than alleles. Panel B shows a illustration of a possible “interaction
graph” of polymorphisms on a block of chromosome. Loci interact with nearby loci, as well as with distant loci outside the
block. The epistatic fitness variance solely within the block, i.e. averaged over the rest of chromosome, is proportional to the
number of interaction terms (arcs in the figure).

The dynamics of the distribution of P (A,E) change dramatically as r falls below rc: For r > rc no genotypes with
E ≥ r + 〈E〉 exist. Hence all genotypes are destroyed by recombination and short-lived. At r < rc, however, many
genotypes with E ≥ r+ 〈E〉 exist which can outrun recombination and grow exponentially. The genotype distribution
is no longer a product of additive and epistatic parts, but contains clones which are populated by many individuals.
Selection now operates on the entire genotype over many generations and the relevant dynamical quantities are now
clone sizes rather than allele frequencies, which are slaved to the performance of the clones. The alleles that make up
the most successful genotype will fixate, not necessarily those with the most favorable additive effect. The transition
line between the two regimes is sketched in Fig. 2 with the ratio of recombination to selection on the x-axis and the
“heritability” - the ratio of the additive variance to the total variance h2 = σ2

A/(σ
2
A + σ2

I ) - on the y-axis. (Note
that heritability also measures the correlation between fitness of a recombinant offspring and parental mean Lynch
and Walsh (1998).) At low recombination rates and strong epistatic interactions, selection operates on genotypes
while at high recombination rates or in absence of epistasis, selection operates on the additive effects of alleles. The
distinction between genotype and allele selection regimes goes back to Franklin and Lewontin (1970); Slatkin (1972),
who showed that a related transition occurs in models with strong heterozygote advantage. The regimes of allele and
genotype selection are summarized in Fig. 2. In absence of epistatic interactions or heterozygote advantage, a similar
condensation phenomenon occurs only at very low outcrossing rates r = O(N−1) (Rouzine and Coffin, 2005).

The condensation of genotypes goes along with a dramatic speed up of the allele frequency dynamics: In QLE (allele

selection) each allele frequency is driven by an effective additive coefficient ai ∼ σ̄/
√
L (each ai accounts for ∼ L−1

of the additive variance σ2
A). When selection operates on genotypes, the time scale of selection is driven by fitness

differences between individuals, which are of order σ̄. The rate of change of allele frequencies is therefore greater by
a factor

√
L which could be a large effect (Neher and Shraiman, 2009). We emphasize that the stationarity of the

distribution of the epistatic component of fitness ω(E) holds only on time scales short compared to that of the allele
frequency dynamics.

The simple picture of the transition in a facultatively outcrossing species can also apply to blocks of chromosome in
obligate sexuals. Consider a block that harbors l loci spread over a map distance c (on average c recombination events
within the block per generation). If epistatic fitness within the block exceeds c, QLE will break down since individual
haplotypes will be amplified by selection above less fit recombinants. Whether such local breakdown of QLE will
occur depends on how fitness variance and recombination rate depend on the block size. The recombination rate is
proportional to the block size, and, assuming constant density of polymorphism, will be proportional to the number l
of polymorphic loci. Similarly, the additive variance is proportional to l and the r-m-s therefore ∼

√
l. The epistatic

variance within the block scales with the number of interactions between loci within the block, as illustrated Fig. 2B.
Any given locus will interact only with a fraction of all other loci, i.e. fij is sparse, and the number of interactions
between loci within a block depends on whether these sparse interactions tend to be local or not. If any two loci
are equally likely to interact, the number of interactions within the block is ∼ l2, so that r-m-s epistatic fitness is
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∼ l ∼ c. Hence the ratio of recombination within the block and the epistatic fitness are independent of the block
size and QLE is either globally stable or unstable. A different conclusion is reached if interactions are local and each
locus interacts with k nearby other loci. As before additive fitness ∼

√
l, but the number of interactions within the

block is ∼ lk. Hence the typical epistatic fitness is ∼
√
lk, which decreases less fast than c as the block length is

decreased. We therefore expect that QLE is unstable on scales below a critical block size lc, where local epistasis
overwhelms rare recombination. This local selection on coadapted haplotypes can coexist with establishment of QLE
on longer genomic scales (Neher and Shraiman, 2009). We will come back to the recombination and selection on
different chromosomal scales in the Discussion.

B. Validity of QLE for finite N and L.

The above discussion of the breakdown of QLE focussed on the competition between genetic interactions driving
and recombination destroying correlations in the limit where fluctuations are negligible and contributions of individual
loci are small. We will now discuss how the discrete contributions of individual loci and the number fluctuations in
finite populations can drive populations off the QLE manifold. This problem has a long history in population genetics
and was mainly discussed for scenarios without genetic interactions, i.e. on the line where the heritability equals 1 in
Fig. 2A. In this case the only source of correlations are the initial condition or fluctuations. Maynard Smith (1968)
showed that without genetic interactions and with no correlations in the initial condition, correlations do not develop
in an infinite population at any recombination rate, in accordance with Fig. 2A. However, novel mutations arise in
single copies on random genomes, giving rise to correlations: QLE has to be stable with respect to these perturbations.

The hallmark of the QLE approximation are slowly changing allele frequencies and steady and perturbative cor-
relations between loci. The latter will only be true, if the correlations relax, i.e. are governed by an equation of the

form χ̇ij = β − αχij with α = 2(f̂iχi + f̂jχj) + rcij > 0 (ignoring mutations). Hence the QLE state is unstable if

−2(f̂iχi + f̂jχj) > rcij . In that case any small deviation from χij = 0, which could be due to stochastic fluctuations,
will grow. This effect has important implications for the evolution of recombination: Consider two closely linked loci
at which beneficial mutations happen. Both novel mutation exists initially as a single copy (χi ≈ −1) and will most
likely reside in different individuals, i.e. are anti-correlated or in negative equilibrium. Selection will now amplify the

initial χij if 2f̂i + 2f̂j > rcij , generating predominantly negative LD. This growth of correlations due to selection on
individual loci slows down adaptation and can result in the loss of beneficial alleles. This phenomenon is known as
Hill-Robertson interference and it contributes to potential benefits of sexual reproduction (Barton, 1995b; Barton and
Otto, 2005; Hill and Robertson, 1966). While this cumulant based approach to interference between sweeping loci is
tractable for few loci, it becomes intractable in populations in which many sweeping loci are tightly linked (Cohen
et al., 2005; Neher et al., 2010; Rouzine and Coffin, 2005).

C. Cumulant analysis beyond QLE

Even though the QLE approximation breaks down when correlations are no longer slaved variables, the cumulant
expansion can be useful to study the short term dynamics of systems with a small number of loci, in particular if the
initial conditions are such that higher order cumulants are small. Furthermore, if only a few isolated pairs of tightly
linked loci are present, cumulants between these pairs can be treated as dynamical variables, while all other pairs
for which the χij are stable are treated in QLE. Such an analysis has for example been performed by Stephan et al.
(2006) to study LD patterns between neutral markers following a selective sweep.

Explicit modeling of stochastic multi-locus systems typically requires computer simulations, which are computa-
tionally expensive when the number of loci or the population size is large. However, making use of the Fast-Fourier
Transformation on the 2L dimensional genotype space, one can speed up such simulation from a runtime that scales
as 8L to 3L. The FFT allows to calculate and reuse the frequency of subsets of loci from which the distribution of
recombinant genomes can be assembled. An efficient implementation of multi-locus evolution for arbitrary fitness
functions and genetic maps is available from the author’s website. Cumulant equations to higher order involve “book-
keeping” of many terms and is best done with computer algebra systems. A package for Mathematica R© has been
developed by Kirkpatrick et al. (2002). A implementation for Maple R© is available from the authors.

VIII. DISCUSSION

We have presented a review of the dynamics of multi-locus genotype distributions and the resulting dynamics of
quantitative traits. We focused in particular on how the distribution of genotypes can be parameterized by allele fre-
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quencies in the weak selection/fast recombination limit. This description extends beyond “beanbag genetics” allowing
also for weak correlation (i.e. linkage disequilibrium) between loci. The central element is the Quasi-Linkage Equi-
librium approximation pioneered by Kimura. QLE emerges as a perturbation expansion in the weak selection/rapid
recombination limit similar to high-temperature expansion in statistical physics. In a suitably defined system, the
population genetics can be classified by the ratio of the strength of selection and the rate of recombination and the
degree to which the fitness variation is additive or epistatic, see Fig. 2. At high recombination and additivity, QLE is
an accurate approximation. This regime is separated from a regime at low recombination and strong epistasis, where
QLE breaks down and the population condenses into a few fit genotypes.

Our exposition assumes a panmictic, random mating, and haploid population. While the former are pretty common
assumptions, assuming haploidy in recombining population might raise objections. Our aim was to discuss the
interplay between selection, genetic interactions and recombination in multi-locus systems. Dominance is a special
kind of genetic interaction, where a locus interacts with itself, giving rise to additional non-linearities. These non-
linearities can stabilize loci at intermediate allele frequencies, a process not possible in haploid populations. The effects
of dominance, however, are well understood at the single locus level, as well as when many loci with heterozygote
advantage are close to each other (Franklin and Lewontin, 1970). Within QLE, the dynamics of allele frequencies in
diploid populations is still relaxational and maximizes the mean diploid fitness. A full parametrization of the diploid
populations and diploid fitness requires a straightforward, if somewhat tedious, generalization: To represent diploid
one should (i) double the number of loci, (ii) define a genetic “transfer function”, C({ξ}), that represents meiotic
crossover of the parental genomes, (iii) extend the fitness function F (g) to 2L hypercube to parameterize the 3L states
(homo- and heterozygocity at L loci). Another simplification of our exposition was the use of the continuous time
description, in contrast to the more common discrete generation formulations of population genetics. Continuous time
formulations assume that the population changes little in one generation. If this is the case, the results are completely
equivalent and one can make use of calculus instead of recursions and difference equations.

The QLE approximation will often be appropriate for panmictic populations where genetic variation is replenished
by de novo mutations. In this scenario, novel mutations establish if they blend in well with genetic make up of the
population. This is manifest in the QLE equation (Eq. (27)) were alleles are selected on the basis of their additive
effect, i.e. their effect on fitness marginalized over the distribution alleles at other loci in the population. The fitness
of individual genotypes is not relevant to the evolutionary dynamics, since genotype frequencies are determined by
allele frequencies (and sampling noise in finite populations). This issue was recently discussed in Livnat et al. (2008).

A very different evolutionary dynamics follows a hybridization event (Barton, 2001; Nolte and Tautz, 2010; Orr,
1995), i.e. a situation when two strains of one species that have been evolving in isolation for some time come in contact
again. The two strains will differ at many loci and these differences have never been tested for compatibility. Crossing
two such diverged strains can result in a phenotypically diverse population from which novel hybrid species can emerge
(Nolte and Tautz, 2010). Such speciation after hybridization is similar to the clonal population structure observed in
theoretical models of the selection dynamics after hybridization (Neher and Shraiman, 2009). In this regime of clonal
competition, the allele frequencies are slaved to the dynamics of the clones and the average effect of an individual
mutation affects the fate of a clone only very mildly. The lucky accident that produced through recombination a
very fit genotype that contains the allele determines whether the allele can fixate or not. The possibility of a sharp
transition between mixing and not-mixing of two populations in a hybrid zone has already been described by Barton
(1983), who used a model of hybrid-inferiority. In the limit of large number of contributing loci, there exists a critical
ratio of recombination rate and selection against hybrids, which separates the regimes of mixing and non-mixing.
Similar transitions are expected if the reason for out-breeding depression is epistasis rather than dominance.

The qualitative differences between the genotype and allele selection regimes also sheds light on the importance of
stochasticity (genetic drift). Allele frequencies are well sampled by O(N) copies, unless the allele is very young (or
about to go extinct). Stochasticity therefore matters only during the establishment phase of the allele. As soon as the

frequency exceeds (Nf̂i)
−1 ≈

√
L/Nσ̄, selection dominates. In the genotype selection phase, however, the founding

of each genotype can, if it is exceptionally fit, change the fate of the population dramatically.
The transition to genotype selection driven by epistatic interaction is related to spin-glass transition in models for

disordered physical systems and magnets. Within these models, the probability of finding the system in a particular
state {si} is given by

P ({si}) ∼ e−H({si})/kT = e−
1
kT [

∑
hisi+

∑
ij Jijsisj+...] , (47)

and hence completely analogous to Eq. (17). Such system generically reside in one of three states: paramagnetic,
ferromagnetic, glassy. In the paramagnetic state at high temperature different parts of the system are uncorrelated,
which is analogous to QLE. The perturbation expansion in σ̄/r is very similar to a high temperature expansion in
statistical physics. At low temperature, the behavior depends on the structure of the Hamiltonian H({si}). If most
of the Jij have the same sign, the system will go to an energetically favored ordered state where spins are aligned,
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giving rise to a ferromagnet. In this case H({si}) has one heavily preferred energy minimum, corresponding to a very
fit genotype.

A different low temperature behavior is found when the Jij have erratic sign. In that case, not all interactions
can be in their favorable state simultaneously and the resulting landscape has many minima and maxima. At low
temperature, the system condenses into one of the minima. This “spin-glass” phase is characterized by a non-trivial
overlap distribution: Different realizations of the system, drawn from the ensemble defined by Eq. (47), will fall into
clusters of different degrees of similarity (measured by Hamming Distance). The clusters themselves have subclusters,
giving rise to a hierarchical ultrametric structure (Mezard et al., 1987). This is in contrast to the high temperature
phase, where most systems share a typical number of sites. These qualitatively different overlap distributions above
and below the spin-glass transition have a direct analogies to population structure and heterozygosity: In the high
recombination limit, genotypes in the population are assembled from the available alleles more or less at random

such that any two individuals differ at about 2
∑L
i=1 νi(1− νi) sites (νi being the allele frequency at locus i). At low

recombination (or substantial inbreeding), the population will condense into fit genotypes (or inbred groups) that are
much more similar to each other than to members of the general population.

Figure 2B illustrates pair-wise interaction between polymorphic loci along the chromosome. In general, we expect a
complex and possibly hierarchical pattern of interactions: A given pair of distant genes will have only a low probability
to interact substantially, while polymorphisms within one gene and its regulatory elements are much more likely to
interact strongly. Nearby polymorphisms in a protein (Callahan et al., 2011) will be still more likely to interact. In
obligate sexuals, the sparse long range interactions will rarely suffice to produce appreciable correlations between loci.
Within small stretches of chromosomes, however, recombination rates are low and if the strength of interactions within
this stretch is sufficiently high, QLE will locally break down. Consider for example a one centimorgan long region,
which in humans corresponds to about one mega base and harbors around a thousand polymorphisms. If the typical
epistatic contribution fitness of this stretch of chromosome were on the order of 1%, we expect run-away selection on
coadapted haplotypes and strong correlations. Since distant parts of the genome are in QLE, one expects a “module”
selection regime, where loosely linked and weakly interacting “modules” are in QLE, but strong interactions and
infrequent recombination has led locally to condensation into coadapted haplotypes (Neher and Shraiman, 2009).
(An excellent early discussion of such epistasis driven “coagulation” in the “soup” of genes is found in (Turner,
1967).) Put otherwise, we can view such a system as consisting of weakly-interacting mesoscopic loci, at which several
super-alleles segregate. These super-alleles are “destructible”, in the sense that recombination within leads to reduced
fitness and purging by selection. However, since recombination within these alleles is rare, quantitative traits would
be highly heritable on short timescales and quantitative genetics would work as usual.

Our discussion of the multilocus theory and QLE was guided by ideas of Statistical Physics. The explicit form of
the (approximate) genotype distribution function P (g) parametrized by instantaneous allele frequencies is the central
pillar connecting the dynamics of population average traits - the subject of QG - to the individual-based evolutionary
process. It is essential that the QLE distribution is reached on a relatively fast time scale of mating and recombination.
Allele frequencies are well defined and vary slowly on this time scale. The QLE ensemble should not be confused with
a very different mutation/selection/drift ensemble - which could be rightfully termed the “Wright equilibrium” (Eq.
(42)) - which is often invoked as a link between evolutionary dynamics and Statistical Physics. Wright equilibrium gives
a stationary distribution of allele frequencies which would be established in a finite population (N playing the role of
inverse temperature) on a time scale longer than the inverse mutation rate µ, provided stationary selection pressures.
Ruggedness of the fitness landscape could further increase this equilibration time scale exponentially (Weissman et al.,
2010). Clearly, this type of equilibrium applies on a very different time scale than the phenomena addressed in the
present work. Related ideas were developed in the context of quasi-species theory to study the conditions under which
hereditary information can be maintained over long times (Eigen, 1971; Franz and Peliti, 1997). The focus of these
studies was pre-biotic evolution, where fidelity of replication was most likely low and stability of genomic information
can be sensibly studied using a simple equilibrium model. Equilibrium arguments were also applied to evolution of
codon bias (Iwasa, 1988) and the evolution of transcription factor binding sites (Mustonen and Lassig, 2005). In the
latter two cases, an ensemble can be constructed by combining many instances of the same sequence motive which
was under constant selection pressure for very long time (conserved transcription factor binding motive or conserved
preference of certain codons over others). In many cases, however, the equilibrium state is of little relevance.

In conclusion, in this review we have provided a derivation of the genotype distribution in the QLE approximation,
providing a systematic generalization of Fisher’s theorem, Kimura’s diffusion theory and Wright’s equilibrium from
LE to QLE, which includes the effect of (weak) correlations between loci. We have also discussed the limitation of
the QLE approximation and the structure of the genotype distribution at low recombination rates.

It is our hope that better understanding of the QLE approximation will promote progress in understanding the
effects associated with its breakdown, whether due to strong epistasis or strong physical linkage, such as for example
the Hill-Roberson effects (hitch-hiking and background selection) which still await comprehensive treatment.
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Appendix A: Glossary

Allele State of a locus, for example the base A, C, G or T at a certain position

Crossover rate In meiosis, parental chromosomes are paired up and crossed over. The density of crossovers on the
chromosome is called crossover rate.

Dominance Interaction of the two alleles at the same locus in diploid organisms

Epistasis Genetic interactions between alleles at different loci, i.e. a dependence of the effect of an allele at one locus
on the remainder of the genome.

Fitness Expected reproductive success of an organism. For modeling purposes, this is often equated with the growth
rate (Malthusian or log fitness) or the average number of offspring in the subsequent generation (absolute fitness).

Gametes Egg and sperm

Genetic Drift Sampling fluctuations of genotype or allele frequencies. Genetic drift enters as the diffusion term in
the Fokker-Planck equation for the dynamics of the distribution of allele frequencies.

Genetic map The cumulative crossover rate along the chromosome. The average number of crossover events per
chromosome is the map length.

Genotype State of the genome, i.e. the set of alleles an individual carries.

Haplotype Alleles inherited from one parent. In diploids, two haplotypes make one genotype.

Heritability Broad sense heritability is the genetic component of traits, i.e. the concordance of traits between
monozygotic twins. Narrow sense heritability refers to the genetic component of traits that is inherited in
sexual reproduction, i.e. the correlation between trait values of parents and children.

Heterozygosity Fraction individuals in a diploid population that carry distinct alleles at a locus.

Homozygosity The complement of heterozygosity.

Linkage Loci on the same chromosome are linked and share history until crossover events separate them.

Linkage (dis)equilibrium Absence (presence) of correlations between loci

Locus Location on the chromosome, e.g. a gene.

Mean Fitness To preserve overall population size, fitness is often measured with respect to the mean fitness of the
population.

Meiosis Division of a diploid cell to produce haploid gametes

Panmictic A population is panmictic if each individual is equally likely to compete and interact with any other
individual. In practice, this requires that dispersal is fast compared to population genetic time scales.

Polymorphism A locus with variation, i.e. the population contains several alleles at this locus.

Random mating Simplifying assumption that mating is independent of genotype, phenotype, and environment.

Recombination Process of reshuffling of the genetic material in sexual reproduction.

Outcrossing Fertilization with sperm/pollen from a different individual

Selfing Many plants and other organisms have female and male sexual organs and can self-fertilize or self-pollinate.
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Appendix B: Notation

The specification of genotypes and parameterization of genotype-phenotype maps is not unique and our notation
differs from the traditional population genetics choice. Conventionally, one chooses one “wild-type” reference genome
(0, 0, . . . , 0) and enumerates deviations from this reference. This is useful when a well defined wild-type genotype exists.
In diverse populations, for example the progeny of cross between diverged strains, the reference free parameterization
we are using here is more natural. The allelic state at each locus is denoted symmetrically by ±1, e.g. whether an
allele comes from one or the other strain. The two different parameterizations are completely equivalent and related
to each other by a simple linear transformation (see Table II below). In the present context the reference free notation
simplifies the algebra since the si = ±1 basis is orthogonal when averaging over the genotype space. The relation to
the Fourier transform allows an unambiguous decomposition of the fitness function into additive parts and epistatic
components of different order (Parceval’s Theorem), while in the reference based parametrization of fitness functions,
more akin to a Taylor expansion, coefficients depend explicitly on the choice of reference. We have also deviated from
the traditional Dij notation for linkage disequilibrium because we want to use the diagonal χii = 1− χ2

i components
of the cumulant matrix (two times the heterozygosity at locus i) on the same footing as the off-diagonal one.

Symbol Meaning/Definition

g Haploid genotype: g = {s1, . . . , sL}
P (g, t) Genotype distribution in the population

〈...〉 Population average

F (g) Fitness (growth rate) of genotype g

fi1...ik Contribution to fitness of the i1 . . . ik set of loci

ai Additive effect of locus i

σ2, σ2
A, σ2

I Total, additive, and epistatic variance in fitness

ξi ∈ {0, 1} Origin of locus i, i.e. maternal or paternal

C({ξi}) Probability of the recombination pattern {ξi}
cij Probability that loci i and j derive

from different parents

µ, r Mutation and outcrossing rate

TABLE I Table of symbols

Quantity Our notation

Allele at locus i, {ai, Ai} si ∈ {−1, 1}
Allele frequency νi νi = (1 + χi)/2 where χi = 〈si〉
Linkage Disequilibrium Dij (i 6= j) 4Dij = χij = 〈sisj〉 − 〈si〉〈sj〉
Heterozygocity Hi = 2νi(1− νi) 2Hi = χii = (1− χ2

i )

TABLE II Population genetic quantities in our notation

Appendix C: QLE in terms of effective fields

In this appendix, we discuss how the fields φi and φij introduced to parameterize the genotype distribution P (g, t)
in Eq. (17) are related to the cumulants of P (g, t). We also detail how the recombination term in Eq. (7) can be
evaluated explicitly within the QLE perturbation theory. We parameterized the genotype distribution via

logP (g, t) = Φ(t) +
∑
i

φi(t)si +
∑
i<j

φij(t)sisj . (C1)

The constant term is determined by the normalization of the distribution, the coefficients φi(t) are related to frequen-
cies and the second order coefficients φij(t) to the connected correlation between loci. In the limit under consideration,
the second order contributions are small and we evaluate the coefficients to leading order in φij(t).
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e−Φ =
∑
g

e
∑
i φisi+

∑
i<j φijsisj

≈
∑
g

e
∑
i φisi

1 +
∑
i<j

φijsisj


= 2L

1 +
∑
k<j

φkj tanh(φk) tanh(φj)

 L∏
i=1

cosh(φi)

(C2)

The relations between χi, χij and φi, φij given in Eq. (20) follow by differentiation.
To arrive at the equations for the time evolution of the fields φi and φij (Eq. (24)), we have to evaluate the

recombination term in Eq. (23). This is done below. The terms proportional to φi(t) cancel exactly between numerator
and denominator and we are left with∑

{ξi}{s′i}

C({ξ})P (g′)

[
P (g(m))P (g(f))

P (g)P (g′)
− 1

]
= r

∑
{ξi}{s′i}

C({ξ})P (g′)
[
e
∑
i<j φij[(ξisi+ξ̄is

′
i)(ξjsj+ξ̄js

′
j)+(ξ̄isi+ξis

′
i)(ξ̄isi+ξjs

′
j)−sisj−s

′
is
′
j] − 1

]
= r

∑
{ξi}{s′i}

C({ξ})P (g′)
[
e
∑
i<j φij[(ξiξj+ξ̄iξ̄j−1)(sisj+s

′
is
′
j)+(ξiξ̄j+ξ̄iξj)(sis

′
j+s

′
isj)] − 1

] (C3)

In the limit under consideration, the second order contributions have to be small enough that the entire exponent is
small. In this case, the exponential can be expanded and the different terms averaged individually.

∑
{ξi}{s′i}

C({ξ})P (g′)

[
P (g(m))P (g(f))

P (g)P (g′)
− 1

]
≈ r

∑
{ξi}

C({ξ})
∑
i<j

φij
[
(ξiξj + ξ̄iξ̄j − 1)(sisj + 〈sisj〉) + (ξiξ̄j + ξ̄iξj)(si〈sj〉+ 〈si〉sj)

]
=
∑
i<j

cijφij [(si〈sj〉+ 〈si〉sj)− (sisj + 〈sisj〉)]

(C4)

where cij is the probability that an odd number of crossovers happened between loci i and j.

Appendix D: Diffusion theory and Wright’s equilibrium

In this appendix, we detail intermediate steps to arrive at the diffusion equation for the allele frequencies in QLE
and the generalized Wright equilibrium. The noise terms in the Langevin equation (36) stem from the multinomial
sampling of the genotypes or gametes. From the covariance of the multinomial distribution, we can therefore determine
the covariance of the noise terms ζi for the χi and the ζij for the χij . The covariance the changes in χi and χj , for
example, can be calculated as follows

〈∆χi∆χj〉 = 〈
∑
g

si∆P (g)
∑
g

s′j∆P (g′)〉 =
∑
gg′

sis
′
j〈∆P (g)∆P (g′)〉

=
1

N

∑
g

sisjP (g)(1− P (g))−
∑
g 6=g′

sis
′
jP (g)P (g′)

 =
χij
N

(D1)

The other covariance terms can be calculated analogously. In particular, one finds 〈∆χ2
ij〉 ≈ N−1χiiχjj = N−1(1 −

χ2
i )(1− χ2

j ).
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The effect of deterministic correlations

If deterministic correlations dominate over the fluctuations in χij the forward Kolmogorov equation for the distri-
bution of the χi is given by

∂tQ({χi}, t) =
∑
i

∂χi

 1

2N

∑
j

∂χj (χijQ({χi}, t)) +Q({χi}, t)

2µχi −
∑
j

χij∂χj 〈F 〉

 . (D2)

In the steady state, all probability fluxes vanish. The i component of the probability flux is precisely the expression
in brackets above and hence has to be equal to zero. Multiplying the bracket with 2Nχ−1

ki and summing over i (χ−1
ki

is the ki element of the matrix inverse of χij), we have

∂kQ({χi}) = Q({χi})

−∑
ij

χ−1
ki ∂jχij − 4Nµ

∑
i

χ−1
ki χi + ∂χk〈F 〉

 (D3)

Next, we use the fact that the off-diagonal elements of χij are small and χij = γij(1−χ2
i )(1−χ2

j ), while χii = 1−χ2
i .

To first order in the off-diagonal elements, the inverse is given by χ−1
ii = (1 − χ2

i )
−1 and off-diagonal elements

χ−1
ij = −χij(1− χ2

j )
−1(1− χ2

i )
−1 = −γij . Going over the terms in Eq. (D3) one by one, we have∑

ij

χ−1
ki ∂χjχij =

∑
i

χ−1
ki

∑
j 6=i

∂χjχij +
∑
i

χ−1
ki ∂χiχii

=
∑
i

χ−1
ki χij

∑
j 6=i

∂χj log(1− χ2
j ) +

∑
i

χ−1
ki χii∂χi log(1− χ2

i )

= ∂χk log(1− χ2
k)

(D4)

The mutation term can be evaluated as follows

4Nµ
∑
i

χ−1
ki χi = −2Nµ∂χk log(1− χ2

k)− 4Nµ
∑
i 6=k

γijχi

= −2Nµ∂χk log(1− χ2
k)− 4Nµ∂χk

∑
i6=k

γikχiχk
(D5)

Substituting these terms into Eq. (D3) and γij =
fij
rcij

, we have

∂kQ({χi}) = Q({χi})∂χk

(2Nµ− 1) log(1− χ2
k) + 2N [〈F 〉+ 2µ

∑
i6=k

fikχiχk
rcik

]

 (D6)

which is straight-fowardly integrated to

Q({χi}) = Ce
2N〈F 〉+4Nµ

∑
i<k

fikχiχk
rcik

L∏
i=1

(1− χ2
i )

2Nµ−1 (D7)

The effect of fluctuating correlations between loci

Even when associations between loci are zero on average, fluctuations of χij can affect the allele frequency dynamics.
The coupling between different loci acts as an additional noise source on the dynamics of allele frequencies. Grouping
deterministic and stochastic forces, the corresponding Langevin equation for χi is given by

χi(t+ ∆t)− χi(t) = ∆t [χii∂χi〈F 〉 − 2µχi] +

∫ t+∆t

t

dt′

∑
j 6=i

χij(t
′)∂χj 〈F 〉+ ζi

 (D8)
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where the integral constitutes the fluctuating noise term. Solving the Langevin equation for χij(t) assuming constant
χi and χj , one finds

〈χij(t)χij(t+ ∆t)〉 =
(1− χ2

i )(1− χ2
j )e
−rcij∆t

2Nrcij
(D9)

Averaging the square of the noise term in Eq. (D8), we find

〈
∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′

∑
j 6=i

χij∂χj 〈F 〉+ ζi

∑
k 6=i

χik∂χj 〈F 〉+ ζi

〉
≈ χii∆T

N

1 +
1

2

∑
j 6=i

χjj

(
1

rcij

∂〈F 〉
∂χj

)2
 (D10)

The cross-term is of order N−3/2 and can be neglected.
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