
APPHYS 237 / BIO 251, Problem Set 4

DUE: 6/04/24

Problem 1: Measuring the DFE for de novo beneficial mutations, Part II

This problem is a continuation of the barcoded lineage tracking problem from last week’s homework,
now with some applications to real data.

The file levy_blundell_etal_2015_barcode_trajectories.txt contains the raw read count tra-
jectories obtained from one such experiment in yeast.14 In this experiment, half a million barcoded
lineages were serially transferred in glucose limited media for 14 days, with bottleneck size of a 256-
fold dilution rate (�t = 8 generations/day) and a bottleneck size of Nb ⇡ 7⇥ 107. We’ll denote the
read count trajectory for an arbitrary barcode i by Ri,t, and we’ll let Dt =

P
iRi denote the total

sequencing coverage in each timepoint. This defines a corresponding set of read count frequencies

f̂i,⌧ ⌘
Ri,⌧

D⌧
. (19)

(a) First, let’s familiarize ourselves with the data. We have been thinking about theoretical
frequency trajectories all quarter, so now is our change to see the real thing! Plot the frequency
trajectories over time of 10 randomly selected barcodes (lineages) from the dataset. Then,
choose the 10 highest-frequency barcodes at the last timepoint (⌧ = 112) and plot their
frequency trajectories over all timepoints. What do you notice about these two groups of
barcodes? Do any of the randomly selected barcodes have trajectories similar to those of the
high frequency set?

Since all of the barcodes start at low frequency, then the initial frequency dynamics of each barcoded
lineage can be described by a variant of the branching process model we studied in class:

@fi

@t
= (Xi(t)�X(t))fi| {z }
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fi

Ne
⌘i(t)

| {z }
genetic drift

. (20)

The main di↵erence is that the e↵ective fitness of a barcode, Xi(t), is now a time-dependent quantity
because each barcode could be composed of one or more sub-lineages: (i) the initial barcoded cells
(with relative fitness 0), and (ii) additional beneficial mutations that arise in the experiment over
time. The main goal of the original paper was to exploit this link to learn something about the
adaptive landscape that the yeast experience in vitro – you’ll repeat some of the key steps of their
analysis in Problem 1 and Problem 2 of this week’s homework.

(b) First, let’s look at things by eye: if you examine the trajectories of the high frequency barcodes
you plotted in part (a), can you guess where mutations started to accumulate in each of these
lineages?

If we want to do this more rigorously, there are two main di�culties we have to deal with. The first
is that the mean fitness of the population, X(t), will increase over time, as beneficial mutations
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start to sweep through the population. The second is that we don’t measure the frequency of
lineage i directly, but only the noisy version in Eq. 19 that we observe from sequencing. Noise in
these read count trajectories will reflect both the stochastic growth dynamics of the experiment
(encapsulated by the Ne term in Eq. 20), as well as noise in the data generation process (DNA
extraction, PCR amplification and sequencing).

Levy, Blundell, et al argued that this compound process is well approximated by a second

branching process model that connects the read count frequencies at successive sequenced time-
points. In particular, given that we observe a lineage at frequency f̂i,⌧ , the conditional distribution

of the frequency at the next timepoint, p(f̂i,⌧+1|f̂i,⌧ ), can be approximated by a branching-process-
like generating function:

H(z|f̂i,⌧ ) ⌘

Z
e
�zf

p(f |f̂i,⌧ ) df ⇡ exp

"
�
zf̂i,⌧ [1 + (Xi,⌧ �X⌧ )�t⌧ ]

1 + z⌧/D⌧

#
, (21)

where �t⌧ is the number of generations between the timepoints, Xi,⌧ is the instantaneous fitness of
lineage i at timepoint ⌧ , X⌧ is the instantaneous mean fitness of the population at that timepoint
(X⌧ ⇡

P
iXi,⌧ f̂i,⌧ ), and ⌧ is an e↵ective noise parameter that captures the net e↵ects of genetic

drift and measurement noise. As we saw in class, this function is di�cult to invert exactly to
get the probability distribution p(f̂i,⌧+1|f̂i,⌧ ). But for large Ri,⌧+1, it can be approximated by the
asymptotic expansion,

p(f̂i,⌧+1|f̂i,⌧ ) ⇠

h
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7775

(22)

Both representations of this conditional probability distribution p(f̂i,⌧+1|f̂i,⌧ ) will be useful at dif-
ferent stages of the problem below.

Our goal in the rest of Problem 1 is to infer the values of the mean fitness X⌧ and noise parameter
⌧ . There are two ways to approach this, and you only need to choose one. Path 1 uses moment
generating functions (parts (c) and (d)), or Path 2, which uses empirical read count distributions
(parts (e) and (f)).

Pick one of the following paths:

Path 1: Moment generating functions (note, if you do parts (e) and (f), you may skip this part)

(c) We’ll first use the measured data to verify that Eq. 21 is a good approximation. Consider
the first timepoint (⌧ = 0), where few of the lineages will have any beneficial mutations.
This means that we can assume that Xi,⌧ ⇡ X⌧ ⇡ 0. Then consider the set of all lineages
with exactly 50 reads in the first timepoint. By construction, these should all have the same
conditional distribution, p(f̂i,1|f̂i,0). Use the observed frequencies of these lineages at the next

timepoint (f̂i,1) to show that the conditional distribution is consistent with the approximation
in Eqs. 21 and 22.
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Hint: consider the empirical generating function, Ĥ(z) = 1
n

P
i exp

⇣
�zf̂i,1

⌘
, evaluated for

z near “typical” values of 1/f̂i,1. (Can you explain why this should be a robust moment to
estimate for a positive random variable in a finite sample?) Rearrange Eq. 21 as a linear
function of 1/z, so that you can use linear regression15 to estimate the slope and intercept.

(d) If we continue to focus on rare lineages (e.g,, 20  Ri,⌧  60), then the vast majority should
remain neutral even for ⌧ > 0. We can therefore use the statistics of these neutral lineages
to estimate ⌧ and X⌧ using the same approach you outlined in (c). Specifically, estimate a
separate value of ⌧ and X⌧ for lineages with Ri,⌧ = 20, . . . , 60, and average them together
to obtain a single estimate of ⌧ and X⌧ for each timepoint. Plot your estimated values as
a function of time. What is the estimated fold change in frequency of a neutral lineage over
the course of the experiment?

Path 2: Empirical read count distributions (note, if you already did parts (c) and (d), you
may skip this part)

One method to infer mean fitness is to monitor the frequency decline of neutral lineages. Likewise,
noise and fluctuations in these neutral frequency trajectories will capture the e↵ects from growth-
bottleneck cycles, amplification, and sequencing. We can use low abundance lineages as neutral
markers, because the vast majority of lineages that are present at only 20-50 cells at the bottleneck
will not accumulate a beneficial mutation before roughly 1000 generations.

(e) First, for each time point ⌧ , form a list of all barcodes with exactly R⌧ reads at time point
⌧ , where 20  R⌧  40 reads. Calculate p(R⌧+�t|R⌧ ), the distribution of these reads at the
subsequent time point ⌧+�t. We can compare this empirical distribution with our prediction
for the number of reads at time point ⌧ + �t, using the probability distribution in Eq. 22.
We will infer the best fit pair (X⌧ ,⌧ ) by minimizing the distance between the empirical
distribution and the predicted distribution of read counts at time ⌧ + �t, which is defined
to be the summed square of di↵erences between the predicted distribution and the measured
distribution:

distance =
2R⌧X

j

(Measured number of barcodes at Rj � Predicted number of barcodes at Rj)
2

(23)

For each initial R⌧ , each time point will yield a best-fit pair (X⌧ ,⌧ ). Estimate this best-fit
pair for each R⌧ 2 [20, 40].

(f) For each time point, average your best fit (X⌧ ,⌧ ) over all initial read counts to obtain a
single estimate of ⌧ and X⌧ . Plot your estimated values as a function of time. What is the
estimated fold change in frequency of a neutral lineage over the course of the experiment? Do
you obtain the same results as the inset in Figure 2a of the original paper (Levy, Blundell, et
al 2012)?

Problem 2: Measuring the DFE for de novo beneficial mutations, Part III

We can now use the fitted values of ⌧ and X⌧ from Problem 1 to scan for the smaller set of outlier
lineages that acquired a beneficial mutation. To do so, let’s imagine that a beneficial mutation with

15
E.g., using the linregress function in the SciPy stats package.
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e↵ect s arose and established in lineage i some time t0. The frequency at later times is therefore
given by

f(t|s, t0) ⇡
c

Nbs
e

R t
t0
(s�X(t0))dt0

, (24)

where c is an O(1) constant that depends on the variance in o↵spring number in the experiment
(c ⇡ 1.8 here, see SI p. 11 in Levy, Blundell, et al 2012). We can therefore approximate the e↵ective
fitness of the entire lineage as

Xi,⌧ ⇡ s ·min

(
f(t⌧ |s, t0)

f̂i,⌧

, 1

)
(25)

which interpolates between Xi(t) = 0 at small times and Xi(t) = s at long times when the beneficial
mutation has fixed within the lineage.

This completely specifies our model for the frequency trajectory of each lineage. The probability
of observing a given lineage trajectory, conditioned on s and ⌧ , is given by

p({f̂i,⌧}|s, t0) ⇡ p(f̂i,0)
Y

⌧

p(f̂i,⌧+1|f̂i,⌧ , s, t0) , (26)

where the conditional probability is given by Eq. 22, with an e↵ective fitness given by Eq. 25. We’ll
now use this model to infer the best fit values of s and t0 for each lineage given the observed values
of f̂i,⌧

(g) Parameter estimation can be done with a standard Bayesian approach. Write a formal expres-
sion for the posterior probability, p(s, t0|{fi,⌧+1}), relative to the posterior probability without

a beneficial mutation (t0 = 1). You may leave your answer as a function of p(f̂i,⌧+1|f̂i,⌧ , s, t0)
and the prior probabilities p0(s, t0). This ratio is known as the posterior odds ratio.

Numerically calculate the posterior odds ratio for trajectory 14 in the data file. For simplicity,
we’ll discretize (s, t0) values into a grid with spacing �t0 = 1 and �s = 0.005, and we’ll assume
a flat prior

p0(s, t0)

p0(t0 = 1)
⇡

(
cf0NbU

0
b s · �s · �t0 for 0  s  0.4 and �250  t0 < 100

0 else,
(27)

where f0 is the typical frequency of a lineage in the initial pool, and U
0
b ⇠ 10�5. For which

values of s and t0 is the posterior odds ratio the highest? Does this make sense given the
shape of the trajectory?

(h) Now use your approach in (d) to estimate (s, t0) values for the first 1000 trajectories in the
experiment. Set t0 = 1 if the posterior odds ratio is less than one; otherwise take the values
of (s, t0) that maximize the posterior odds ratio. How many beneficial mutations do you
detect? Extrapolating the run time from this pilot data, estimate how long it would take
your program to process all ⇠500, 000 trajectories in the experiment?

Bonus: estimate (s, t0) values for all ⇠500, 000 trajectories in the experiment.
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(i) Finally, we can use your detected beneficial mutations to estimate the distribution of fitness
e↵ects, Ub⇢(s). The number of beneficial mutations in an interval s ± �s that establish and
rise to detectable frequencies is given by

n(s) ⇡

"
Nb

Z t⇤(s)

0
e
�X(t)

dt

#
· Ub⇢(s)�s ·

s

c
(28)

where t
⇤ is the latest the mutation could establish and still perturb the frequency of the

lineage. Write an approximate expression for t
⇤(s), and then rearrange Eq. 28 to write

Ub⇢(s)�s as a function of the observed values n(s). Plot your estimated DFE using the
beneficial mutations you detected in (f).

Problem 3: Genealogies from sequences of neutral mutations

In class, we saw how we can use coalescent theory to go from genealogies to sequences of neutral
mutations. In this problem, we will consider how to go in the opposite direction. Suppose we draw
a sample of n = 6 individuals from a population and observe mutations at one or more sites. We’ll
consider a few di↵erent imaginary scenarios with S = 1, 2, and 3 variable sites.

(a) A (b) AG (c) AG (d) AG (e) AGTG

A TC AG AG AGCG

A AG AC AC ACCG

T TC TC TC TCCA

T AG TC TC TCCG

T TC TC TG TCCA

(a) Draw two genealogies that are consistent with the mutation pattern in (a), assuming that
each mutation happens only once (µTc ⌧ 1).

(b) Repeat for pattern (b) above.

(c) Repeat for pattern (c) above.

(d) Try to repeat for pattern (d). Is it possible to draw a consistent genealogy where each mutation
happens only once? How is (d) di↵erent from (c) and (b), in terms of the number of distinct
haplotypes that are observed? (A version of this idea, known as the four gamete test is
frequently used to diagnose recombination or recurrent mutation events in DNA sequence
data.)

(e) Draw a genealogy that is consistent with the mutation pattern in (e).

Problem 4: Sexual vs asexual selection on a highly polygenic trait

Suppose that we create a population by crossing two diverged strains of yeast, and we evolve the
resulting hybrid o↵spring in an environment that selects for higher values of a particular trait.
We’ll assume that the fitness components of this phenotype are controlled by a large number L of
mutational di↵erences between the two strains, each contributing a small fitness e↵ect ±s/2. For
simplicity, we’ll assume that the positive and negative mutations are evenly distributed between
the two parents, and that the recombination rate is su�ciently high that the di↵erent mutations
are assigned to o↵spring independently. Under these assumptions, the variance in fitness of the
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o↵spring are normally distributed with mean 0 and variance V = Ls
2
/4. The goal of this problem

is to consider what happens in the so-called infinitesimal limit , where we let L ! 1 and
s ! 0 while keeping the variance V = Ls

2
/4 constant. (Formally, we can achieve this by setting

s =
p

V/L and thinking about an asymptotic expansion for large L.)

(a) Let’s first consider the case where we evolve the hybrid o↵spring asexually. For simplicity,
we’ll neglect the possibility of additional mutations in the o↵spring, so that we essentially
have a pooled fitness assay similar to Problem 6 of Problem Set 1. What is the initial rate of
fitness increase of the population (@tX)?

(b) If the asexual population was founded by a large but finite number of hybrid o↵spring, N0,
there will be a maximum possible fitness xmax within the initial hybrid pool. Using extreme
value theory, we can show that the expected value of xmax is given by

xmax ⇡

p
2�2 logN0 (29)

However, some of these individuals will drift to extinction while rare, while others will establish
and start to grow to higher frequencies. One can correct for this in our extreme value theory
calculation, leading to the maximum established fitness,

x
est
max ⇡

p
2�2 logN0� (30)

How long does it take for the mean fitness of the population to reach fitness xestmax if it grew
at the initial rate of adaptation the whole time. Can you speculate what happens to the rate
of adaptation after this point (in words)?

(c) Now let’s imagine that the evolution step is performed with continual rounds of sexual re-
production, with a su�ciently high rate of recombination that the fitness-influencing sites
are e↵ectively unlinked (rij � �). How does the mean fitness of the population grow in this
scenario? How long do we have to wait before the population reaches the maximum asexual
fitness from Eq. 30? How much do the frequencies of mutations change over this timescale?
Based on your answers, what would you conclude about the e�ciency of adaptation in sexual
vs asexual populations?
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