APPHYS 237 / BIO 251, Problem Set 1
DUE: 4/16/24
Directions: Everyone should do Problems 1, 2, and 3, and one other problem of your choosing.

Data files available at: https://bgoodlab.github.io/courses/apphys237/data_files.zip

Problem 1: Molecular evolution and genetic diversity in the influenza virus

The text file influenza_HA_dna_sequences.fasta contains a list of 841 complete DNA sequences
of the hemagluttinen (HA) gene from influenza virus samples collected between 1968 and 2005.!
Hemagluttinen is a surface protein that allows the viruses to enter host cells, making it a primary
target for neutralizing antibodies. This creates a strong selection pressure for the HA gene to evolve
over time to evade these immune defenses.

(a) Calculate the number of single nucleotide differences between the first sample (A/Aichi/2/1968)
and the remaining samples, and plot the results as a function of the sampling year. How many
differences have accumulated over this ~40 year period? What fraction of the HA gene does
this account for?

(b) Calculate the number of genetic differences between all pairs of strains from the same year,
and plot the distribution of this quantity aggregated across all years. Estimate the genetic
“turnover time” — i.e., how long would we have to wait for the population to accumulate the
same number of genetic differences that typically separate co-circulating strains.

Problem 2: The Luria-Delbriick experiment

In the early 1940s, Salvador Luria was conducting experiments to understand what made bacteria
resistant to viruses. Many had observed that the offspring of resistant bacteria were also resistant,
but it was unknown whether the virus induced resistance (like animals that become resistant from
surviving an infection) or if the bacteria acquired resistance through a spontaneous mutation prior
to encountering the virus. Luria and his colleague Max Delbriick settled the question and provided
a method of measuring mutation rates, known as the Fluctuation Test, for which they received a
Nobel Prize.

Consider a population of bacteria that grows for 7' generations, reaching a final size of Np = Np2”
cells. The population is then exposed to the virus and the number of resistant individuals are
counted (e.g. by plating and counting colonies). If resistance is induced by the virus, then the
number of resistant bacteria should be Poisson distributed with mean pNr, where p < 1 is the
probability of acquiring resistance during the encounter.

However, if resistance is acquired through spontaneous mutations, we must also account for individ-
uals that inherited their resistance phenotype from mutation events that occurred before exposure
to the virus, while the population was still growing. Assume that none of the initial Ny cells are
resistant, and let u < 1 be the probability that each of the daughter cells acquires a mutation
during division. Let M7 denote the total number of mutant cells in the population at the end of

!The same data can also be accessed in CSV form in influenza_HA_dna_sequences.csv, though the FASTA
format is more commonly encountered in the wild.



the growth phase. The distribution of M7 is known as the Luria-Delbriick distribution, and it
remains an active area of research today.

(a)

What is the expected number of new mutations that are produced in generation t? Call this
number 6(t). The actual number of mutations that are produced will be a random variable
which we will denote by m(t). We will assume that m(¢) will be Poisson distributed with
mean 6(t).

If a mutation arises in an individual at generation ¢, how many descendants does it leave at
time 7', assuming that it grows deterministically? Call this number n(t). Write an expression
for My as a sum over m(t) and n(t). For simplicity, you may assume that mutations are
sufficiently rare that all mutations arise in previously non-resistant cells.

Use your results to calculate the mean and variance of My, which we will denote by (Mr)
and Var(Myp). You may simplify your expressions by assuming that 7' > 1.

It is useful to compare the mean and variance to their expected relationship under a Poisson
distribution using using a so-called Fano factor,
Var (M,
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which is equal to 1 for Poisson distributions. How much larger is F' for the Luria-Delbriick
distribution? How might you use this information to distinguish between the induction vs
mutation hypotheses above?

Unfortunately, the same properties of the Luria-Delbriick distribution that allow us to distin-
guish the two hypotheses make it difficult to measure (M;) and Var(M;) in practice. To see
this, suppose we ran n independent replicates of this experiment and calculated the sample
average,
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For sufficiently large n, the sample average My will approach the theoretical mean (Mr7).
The relative error can be estimated by the cofficient of variation,

Var(MT)

(Mr)
Calculate the coefficient of variation for M7. How many independent experiments would you
need to run to ensure a relative error of order €7 What happens in the limit that Noyu < 17

This pathological behavior arises from the fact that the theoretical mean and variance are
averaging over rare events: “jackpot” mutations that occur early in the growup phase and
have an outsized impact on M;. When Ngou > 1, large numbers of jackpots occur in the
first generation of growth, and the behavior of M, is relatively predictable. However, when
Nop < 1, jackpots are so rare that they will not occur in a typical experiment, though they
continue to influence the theoretical mean. This suggests that there is reason for hope: if
jackpots are causing all the problems, then the behavior across replicate experiments should
be more predictable if we know that some jackpots have definitely not occured — we just have



to come up with a way to predict the typical values of M; in a set of n experiments. We will
explore one such scheme here.

Calculate the total number of mutations that are expected to arise before generation ¢, across
all n populations. Call this number 0. (t|n). Find the critical time ¢t*(n) where 0 (t*|n) ~ 1.
What conditions are required to ensure that this critical time occurs in the middle of the
experiment (t* > 1 and T —t* > 1)7

This definition of ¢*(n) suggests that there will often not be any mutations that arose much
earlier than t*(n) in any of our n replicates. This suggests that one might be able to predict
the typical behavior of our replicated experiment by repeating the calculations above with a
modified version of 6(t):

- _Jo if t <t*(n)
b(tn) = {H(t) if t > t*(n) )

which enforces this typicality constraint. Use this expression to calculate the typical mean
and variance across the replicates as a function of n, as well as the coefficient of variation.
Is there still any pathological behavior when Nou < 1, provided that 1 < t* < T7 Does the
coefficient of variation scale in the way we expect from the central limit theorem?

Bonus: At this point you might be worried, because we did not use the full Luria Delbriick
distribution for our serial dilution model in class. However, the serial dilution model contains
one extra step that we have not considered here: the dilution of the final culture into a new
flask with the initial size Ng. The number that matters is the number of mutants in the new
flask, M., which will be Poisson distributed with a random mean, No(M7/Nr). Calculate
the mean and variance of M., as well as the Fano factor. How large is the deviation from the
Poisson approximation we used in class?

Problem 3: The E. coli genome

The text file ecoli_reference_genome.fasta contains the genome sequence of the bacterium
Escherichia coli — specifically, the genome sequence of a lab strain named REL606, which we will
encounter several times throughout this course.

(a)
(b)

How long is this E. coli genome? What is the relative fraction of A’s, T’s, C’s, and G’s?

Calculate the distribution of 20-mer’s in the genome (i.e., the number of times you see each
sequence of 20 bases, allowing for overlaps). What fraction of the 20-mer’s occur only once?
What does this tell us about fraction of sites in the E. coli genome that can be uniquely
identified by a 20bp sequence?

The text file ecoli_genes.txt contains a list of all the genes in this strain, along with their
locations (in 1-based coordinates), and whether they are transcribed in the forward or reverse
orientation. Plot the distribution of gene lengths. How many genes are there? What fraction
of the genome do they account for? What fraction of genes are transcribed in the reverse
orientation?

Using the genetic code (https://en.wikipedia.org/wiki/DNA_codon_table), calculate the
total number of possible synonymous mutations (those that don’t change the amino acid



sequence of the protein), the total number of possible nonsense mutations (those that change
one of the existing amino acids to a stop codon), and the total number of possible missense
mutations (those that change one of the amino acids without introducing a stop codon) for
the REL606 strain. You may assume that all base pair transitions are equally likely.

Pick one of the following problems:

Problem 4: Single Locus Simulations

(a) Write a computer program that simulates the frequency trajectory of a mutation in the serial
dilution model described in the lecture notes. Plot a few example trajectories starting at
an initial frequency of f(0) = 0.5, with different values of N and s (N = 10% 103,10,
s=0,10"2,1073.

(b) Modify your simulation to include mutations, using the simple approximation described in the
Lecture notes. Plot a few example trajectories with N = 10%, f(0) = 0, and = 10~°, both
for (i) a deleterious mutation with s = —1073 and (ii) a beneficial mutation with s = 1072,

Problem 5: Competitive fitness in a long term evolution experiment in E. coli

One of the longest running laboratory evolution experiments was started by Richard Lenski in 1988
and is still in progress today. Lenski founded 12 independent populations of E. coli from a common
ancestor strain, and he and his team have been propagating these 12 populations in glucose-limited
media using a serial dilution protocol similar to what we discussed in class. This experiment uses
a 1:100 dilution factor, so that the populations experience about log,(100) &~ 7 generations a day
with a daily bottleneck size of Ny ~ 5 x 10%. Every 500 generations, a copy of each population
is cryogenically preserved for future study. After more than 30 years, Lenski’s experiment has
produced >1500 archived samples covering >70,000 generations of evolution in the same controlled
conditions.

Among other applications, these frozen population samples are used to measure the fitness of
the evolved populations using a variant of the fitness assay we described in class. Variants of
the ancestral strains were created that produce different colored colonies when grown on a special
media in Petri dishes. These modified ancestral strains are mixed with the evolved populations
(usually at a 50:50 ratio) and are competed for At generations (typically one daily cycle). The
relative frequencies at the beginning and end of the cycle are measured by plating the cultures and
counting the number of colonies of each type. The relative fitness of the evolved population (S)
can be estimated by the plug-in estimator,

Npop(At) Nane(0) ) (5)
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where N;(t) denotes the number of colonies of each type at a given timepoint.

(a) The file LTEE_ancestor_fitness_assays.txt contains the results of ~500 fitness assays
performed by Wiser et al (Science, 2012). Approximately 250 samples were assayed across 6
populations, with 2 biological replicates for most of the samples. The difference between the
fitness estimates from these biological replicates provides an estimate of the uncertainty in



the fitness measurements. Plot the distribution of these errors across all timepoints. What is
the typical uncertainty in an individual fitness measurement using this approach?

After averaging over the two replicates at each timepoint, plot the fitness trajectories for each
population as a function of time.

Previous studies have argued that these fitness trajectories can be fit by the logarithmic
function,

t
X(t) = X.log <1 + ”“) : (6)
Xe
with X, ~ 4.6 x 1072 and vy = 7.7 x 10~%. Plot this function against your data. Does it look
consistent? What is the predicted fitness gain between generation 40,000 and 50,0007 How
does this compare to the measurement uncertainty estimated above?

The file LTEE_40k_fitness_assays.txt contains another ~800 fitness assays performed by
Lenski et al (Proc R Soc B, 2012). Unlike the previous experiments, where the evolved poplu-
ations are competed against the ancestor, these experiments compete the evolved population
against a reference strain that was isolated from one of the populations at generation 40,000.
They also use a longer competition period (3 daily cycles, rather than 1) and perform more
biological replicates for each sample. Use these data to calculate the gain in fitness between
generation 40,000 and 50,000, and between generation 50,000 and 60,000, along with the
uncertainties in these estimates. Is there evidence that fitness is still increasing in Lenski’s
experiment at these later timepoints?

Problem 6: Pooled fitness assay

Suppose that you have a population that contains a mixture of K different strains, each with its
own fitness difference s; (k =1,..., K) relative to a reference strain.

(a)

(b)

Using the serial dilution model we discussed in class, calculate the relative frequencies of each
strain after one cycle of growth (i.e., just before the dilution step), assuming that each strain
starts at a relative frequency fx(0).

Neglecting noise, solve for the relative frequencies of each strain after another cycle. Can
you write a formula for the relative frequencies after an arbitrary number of cycles? or an
arbitrary time ¢?

Suppose that the fitnesses s; were all shifted by a constant amount ¢. What happens to the
dynamics of the strain frequencies f; ()7 What does this mean for our ability to measure s
by tracking strain frequencies over time?

One way to avoid this issue is to ensure that one of the strains in the pool (e.g. k = 0) is the
common reference against which fitness is measured (e.g. the wildtype), so that s = 0. What
is the value of fi(t)/fo(t) in this case? Use this result to generalize the formula in Eq. 5 to
the multi-strain case, where you have counts Ny of each strain k at a pair of timepoints. This
is known as a pooled fitness assay. With the advent of DNA sequencing, pooled fitness
assays have become a common tool to measure the fitness of large collections of mutants
simultaneously (e.g. all single gene deletions of a given strain) — we will see examples of these
in a later problem.



(e) For the moment, let’s stay in theory land. Let’s assume that K is very large, and that the
fitnesses of the non-wildtype strains are normally distributed with mean p = 0 and variance
o?. Assuming that the wildtype strain starts at frequency fo, and all the remaining strains
are evenly distributed, write a formula for the frequency trajectory of a focal strain k with
fitness s > 0 as a function of time. The following property of normal distributions may be
useful:

1
(57) = e ™)
Is the frequency trajectory monotonic? If not, when does it reach its maximum?

Problem 7: Experimental evolution in a chemostat (in theory)

In addition to the serial dilution model we discussed in class, another common protocol for exper-
imental evolution makes use of a continuous-culture device known as a chemostat. A chemostat
is a well-mixed vessel (volume V') in which nutrients are fed in at a fixed rate via an input tube,
and cells and nutrients are continually removed through an output tube. In this setup, the num-
ber of cells in the vessel, n(t), as well as the nutrient concentration, ¢(t) (in units of cell biomass
equivalents per unit volume), are both dynamical variables that adjust according to the internal
dynamics of the system. For a single strain growing in isolation, these dynamics can be written in
the form

i r(c)n— dn (8)
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where 0 is the dilution factor (i.e., the fraction of the total vessel volume that flows in and out
per unit time), ¢, is the concetration of nutrients in the input tube, and r(c) is the growth rate
of the microbe as a function of the resource concentration. In the absence of evolution, the system
will eventually approach a (non-equilibrium) steady state characterized by a constant values of n(t)
and c¢(t). Let’s call them n(t) = n* and c(t) = ¢*, respectively.

(a) Solve for the growth rate, r* = r(c*) that is achieved at this steady state — this gives a measure
of the effective generation time, 7, = 1/r*. How do * and 7, depend on the concentration of the
input nutrients, ¢;,?

(b) Solve for the population size n* as a function of ¢*. In many cases of interest, we will have
c* < ¢y — i.e., the microbes are eating most of the nutrients that we put it in the chemostat.
Calculate the lowest order contribution to n* in the limit that ¢* < ¢j,. How does this quantity
depend on the growth function r(¢)? How do you explain this result?

(¢) Now we will consider how the system relaxes to this steady state. It is often useful to consider
an adiabatic limit, where the dynamics of the nutrient concentration relax more rapidly than the
dynamics of population size. Formally, this is equivalent to neglecting both the di.c and —dc terms
in Eq. 9. Use this approximation to eliminate the resource concentration from Eq. 8 and obtain a
differential equation that depends only on the current value of n(t). Solve this equation for n(t)



as a function of n(0). Assuming that n(0) # n*, how quickly does the system relax to the steady
state?

(d) We will now consider competition dynamics between two strains. Suppose we have a wildtype
strain ny with growth function r(c). The functional form of r(c) is not typically known, but in
simple cases, it takes on a Monod-like form,

r(€) = Tmax (HCK> ; (10)

where rpax is proportional to the expression of an enzyme in the limiting metabolic pathway.
Suppose have a mutant ny,,; that increases the expression of this enzyme by a factor (14 s). Write
down joint model for nyt, and nyu, and c. Use the adiabatic approximation above to eliminate
c¢(t) and obtain an effective model that depends only on nyt and npy,t. Use this model to obtain a
corresponding equation for the total population size, N (t) = nywt(t) + Tmut (t)-

(e) Suppose that nyt(0) + Pmut(0) = n*. What can we say about the dynamics of N(t) at later
times? Use this result to eliminate nyt(t) and obtain an effective model for the mutant frequency
ft) = nmue(t)/N(t). To lowest order in s, how does the form of this model compare to the serial
dilution model discussed in class?

(f) Finally, we will briefly consider the effects of stochasticity. This can be tricky to define in
continuous time, so let’s imagine that all of the input and output flow in our device occurs in
discrete timesteps of length A¢t. What is the probability that a single cell falls in the dilution volume
SV At? If there are currently npy,(t) and ny cells of the mutant and wildtype, respectively, what
is the typical variation in the number of cells of each type that are diluted out in each timestep?
How does this compare to the noise term in the serial dilution model from class?



