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Chapter 1

Introduction

1.1 Preface

The goal of this course is to provide an introduction to quantitative evolutionary
modeling through the lens of statistical physics. Why is such a course necessary,
and why should you take it?

Atits core, physics is the quantitative study of how matter and energy change
over time. In the living world, many of these changes are driven by Darwinian
evolution, which acts on populations of organisms and the information encoded
in their genomes. The study of this process — often known as evolutionary dy-
namics or population genetics — has become one of the fastest growing sub-
fields of biophysics, which is itself one of the fastest growing areas of physics'.
Technological advances in our ability to read and write genomes are fueling a
lot of exciting progress in this area, in which interactions between quantitative
theory and experimental data are playing an important role. Physicists and en-
gineers are uniquely poised to contribute at this interface, given their extensive
training in both theoretical and applied problems.

Unfortunately, it can be hard to find a dedicated set of courses where one

'See the recent report, Physics of Life, from the National Academy of Sciences, https://nap.nationalac
ademies.org/resource/26403/interactive/



can learn this material, despite the fact that it’s now a relatively established sub-
field. This is particularly true for evolutionary biology and population genet-
ics, where the underlying mathematical models are sufficiently complicated that
they are rarely covered — even in graduate-level courses — in the traditional biol-
ogy curriculum. There are lots of great courses in population genetics that are
now available *, but they tend to be geared toward “consumers” of population
genetic methods, and assume that students have little familiarity with the math-
ematical tools (e.g. PDEs, series expansions, probability distributions) that are a
core part of the undergraduate physics curriculum. As a result, students are of-
ten left to comb through the primary literature, which can be quite challenging
given the long history of the field.

The this course is an attempt to fill this gap. It aims to provide a mathemat-
ically rigorous but biologically naive introduction to the field of evolutionary
dynamics and genomics. It is targeted both to physicists and engineers who are
curious about evolution, and want to get up to speed on modern theoretical and
experimental approaches, as well as biologists who might want a deeper under-
standing of the theoretical tools we can use to model evolution mathematically.
The course covers topics ranging from the foundations of theoretical popula-
tion genetics to experimental evolution in laboratory microbes, while empha-
sizing techniques like order-of-magnitude estimation and the method of succes-
sive approximations. For physics students, it might also provide a first exposure
to non-equilibrium approaches in statistical physics (e.g. stochastic differential
equations and continuous-time branching processes) which have widespread ap-
plications beyond this course. As we will see throughout the course, evolution-
ary phenomena will turn out to provide a fantastic setting in which to explore
many of these ideas.

In the remainder of this section, we will provide a brief overview of what
we mean by “quantitative evolutionary dynamics”, and start to introduce some
of the key questions that we will be interested in during the course. The next

*One of my favorites is Graham Coop’s “Population and Quantitative Genetics” course, which is available on-
line: https://github.com/cooplab/popgen-notes/releases.



two chapters will quickly review some of the mathematical and biological back-
ground, and then we’ll start with or first model of evolution in Chapter 4.

1.2 Evolution as a statistical mechnical process

What do we even mean by the phrase “quantitative evolutionary dynamics”?
Traditionally, I think a lot of us are used to thinking about evolution as a his-
torical process — that is, the story of how life came to be the way it is today.

Evolution as an organizing principle

pe In 1858, Charles Darwin and Alfred  studies have added, and continue to add,

g 3 Russel Wallace independently proposed  overwhelming support for this view of

2 a theory of biological evolution to life’s history. Evolution today is one of
explain the diversity of life on Earth. the best documented and widely

" Since then the fossil record and DNA  accepted principles of modern science.
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In this view, a major goal is to figure out what these historical relationships are,
what happened at the major transitions, and so on.

We’re also probably used to thinking about evolution as the world’s best op-
timization scheme, which is able to generate some exquisitely fine-tuned biologi-
cal structures when compounded over millions and billions of years. Here is one
of my favorite examples that you might have heard about from Planet Earth:
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Evolution can produce exquisitely fine-tuned structures
over long (geological) timescales

Ophiocordyceps unilateralis

The Jurassic Park
Theory of Evolution

This is a picture of a fungus named Cordyceps, which infects a particular species
of ant, and manages to control the ant’s behavior by taking over its brain.? It
makes the ant climb onto a leaf that is 25 &= 2cm off the ground, and then a
fruiting body bursts out of the ant’s head, in order to rain down spores onto the
generation of ants.

This behavior is really fine-tuned: if the leaf is a bit higher up or a bit far-
ther down, then the temperature and humidity are such the spores don’t grow
as well. This particular species of fungus also has difficulty growing in closely re-
lated species of ants. Evolution provides us with a story for how this fine-tuned
behavior could arise — something we might call the “Jurassic Park” Theory
of Evolution: life just finds a way.

At the same time, this process seems to be entirely constrained by the precise
biological mechanisms that allow this sort of mind control to occur, and the

*Ed Yong wrote a nice popular science article about this species for The Atlantic: https://www.theatlan
tic.com/science/archive/2017/11/how-the-zombie-fungus-takes-over-ants-bodies-to-c
ontrol-their-minds/545864/



chance events that allowed it to happen for this particular pair of species, and not
others. It doesn’t seem like physics would be particularly helpful for predicting
this sort of behavior.

However, if we turn our attention to microbial organisms, we’ll notice that
not all of evolution involves these micraculous innovations that take place over
geological time. Instead, there are many smaller-scale examples of evolution that
take place on human-relevant timescales — some of which have important prac-
tical consequences that we might want to predict or control.

Here is just one real-world example, showing the evolution of drug resistance
in a cohort of HIV patients during a clinical trial.

Evolution can also occur on human-relevant timescales
in fast growing microbial populations
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Feder et al (PLoS Genetics, 2021)

Each one of the colored lines represents a different patient. So we can see that all
10 or so acquired resistance to this particular drug within about 12 weeks. The
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initial HIV strains were not resistant to begin with, so this means that in each
host, one of the billion or so viral particles acquired a random mutation that
allowed it to evade the drug, and this its descendants to rapidly take over the
population.

Atsome level, this process is just as random as the zombie ant example above.
It still relies on a random mutation occurring in a single random individual,
which just happens to provide resistance to this particular drug. In this case,
however, we can see that these random events lead to much more repeatable be-
havior at the population level — enough that we can start asking some guanti-
tative questions: For example, is there something special about the two patients
at the bottom that caused them to acquire drug resistance anomalously late? Or
is this just the typical variation we'd expect in a random ensemble of 10 patients?

There are many other examples like this. This is a genealogical tree showing
the worldwide evolution of the influenza virus over the last 30 years, as it evolves
to evade the collective effects of all of our immune systems.
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Example: antigenic evolution of the global influenza pop’n
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Luksza and Lassig (Nature, 2014)

We could construct an analogous (and much bigger tree) for SARS-CoV2 over
the last few years*. A big challenge is that every year, we have to choose one or
two of these strains to use to serve as the basis for that season’s influenza vaccine.
So something we might want to know — and which researchers are actively try-
ing to do right now — is to determine whether we can use real-time genome se-
quencing to forecast which strains are likely to dominate in the next flu season,
and to use this information to inform vaccine selection.

Here’s another example, showing the evolutionary processes that occur in
our immune cells as they respond to antigenic pressure.

*You can play around with these trees yourself using the NextStrain tool: https://nextstrain.org/nco
v/gisaid/global/6m
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Example: somatic evolution of immune repertoires
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In this case, we might want to figure out whether we can guide our immune sys-
tem to evolve a particular desired antibody over another, by designing the right

vaccination cocktail.

Cancer is another example. This is fundamentally an evolutionary disease,
in which some of our cells acquire a sequence of mutations that allow them to

proliferate out of control.
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Nourmohammad et al (MBE, 2019)
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Example: somatic evolution of cancer tumors

Fertilized egg.
<— Trisomy 1q

PIK3CA, TP53,
GATA3, NCORT, 100% tumor cells;
SMAD4 & MLL3 ~27,000 mutations
mutations

® How long does it take for cancer to emerge? | yr? 1000yrs?

® How rapidly do tumors acquire resistance to treatment!?

Nik-Zainal et al (Cell, 2012)

In this case, we might want to know things like how long we expect it to take
for a particular cancer to emerge in a given individual. From the organism’s per-
spective, it makes a big difference whether this process takes <10 years or 100’s to
1000’s of years. This illustrates that even order-of-magnitude predictions could
be extremely useful.

Finally, there are a lot of interesting examples in the field of experimental
evolution, in which large numbers of independent populations can be evolved
in parallel in controlled laboratory conditions.
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Example: high-throughput evolution in the laboratory

Mutations observed in genome
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These experiments offer an opportunity to move beyond merely speculating
about what might happen if we replayed the tape of evolution, and instead start
to map out the entire statistical ensemble of outcomes in a given environment.
To make progress on these questions, it’s clear that we’ll have to move be-
yond thinking about evolution as a historical process or a perfect optimization

machine, and instead start thinking about evolution as an algorithm, or a
statistical mechanical process.
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Evolution as a statistical mechanical process
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Goal: understand the mathematical models and experimental data that
help us think about this process in a quantitative way

The catch is that this will require us to move beyond the statistical mechanics of
billiard balls that we’re used to thinking about in physics. Instead, we’ll have to
deal with the statistical mechanics of noisy self-replicating bit-strings. The goal
of this course is to introduce the mathematical models and experimental data
that help us think about this process in a quantitative way.
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