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Experimental methods
1 Library construction, evolution and sequencing barcodes

1.1 Plasmid Cloning

Plasmids pBAR1 (Figure 1a), pBAR2 (Figure 1b) and pBAR3 (Figure 1c) were cloned from the following
sources (all available from EUROSCARF) by standard methods: 1) plasmid backbone / bacterial origin
from pAG32, 2) natMX, kanMX, and hygMX [1] from pAG25, pUG6, and pAG32 respectively, 3) Gal-Cre
from pSH63 , 4) URA3 from pSH47, 5) artificial intron, random barcodes and loxP sites were synthesized
de novo (IDT).

P23 1451...1471
Cre 929...1960

GAL1 promoter 354...832
PEV9 322...346

2272 XhoI (1)
CYC1 terminator 2278...2529

P85 2537...2520
NatMx 2590...3739

PEV8 3651...3632

pBAR1
6344 bp

(a) pBAR1

CYC1 terminator 1387...1638

1117 NdeI (2)
Cre (truncated) 849...1069

lox66 1647...1680
Artificial intron branch point 1744...1750
Artificial intron terminator 1769...1771

URA3 1772...2386

URA3 terminator 2387...2463

kanMX 2823...3632
3877 SacI (1)

6413 NdeI (2)

pBAR2
6497 bp

(b) pBAR2

CYC1 terminator 1407...1658
1401 XhoI (1)

Cre 863...1089

GAL1 promoter 354...832

1679 KpnI (1)
Artificial Intron Start 1732...1727
URA3 1921...1733

URA3 promoter 2056...1922

hph 2515...3465

pBAR3
6310 bp

(c) pBAR3

Figure 1: Maps of plasmids used in this study

1.2 Plasmid random barcode library construction

Random barcodes were inserted into pBAR3 by ligation. A primer containing a KpnI restriction site, a
random 20 nucleotides, a lox71 [2, 3] site and a region of homology to pBAR3 were ordered from IDT:

P85 = CCAGCTGGTACCNNNNNAANNNNNTTNNNNNTTNNNNNATAACTTCGTATAGCATACATTATACGAACGGTAGGCGCGCCGGCCGCAAAT
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Cre (truncated) 863...1089

GAL1 promoter 354...832

Barcode 1726...1701

URA3 promoter 2104...1970

pBAR3-L1
6358 bp

HygMX 2563...3513

URA3 1969...1781
Artificial Intron Start 1780...1775

lox71 1700...1667

CYC1 terminator 1407...1658

Figure 2: pBAR3-L1map

Random sequences were limited to 5 nucleotide stretches to prevent the inadvertent generation of restriction
sites. The P85 and

P23 = GCCGAAATTGCCAGGATCAGG

primers were used to amplify a portion of pBAR1. Both the PCR product and pBAR3 were cut with KpnI
and XhoI restriction sites and ligated together to generate plasmids containing a lox71 site and a random
barcode. Ligation products were inserted into DH10B cells (Life Technologies) by electroporation, allowed
to recover from electroporation in liquid media for 30 minutes, and plated onto 180 LB-Ampicillin plates
at a density of 3500 CFU/plate, a total of 630,000 colonies. During the recovery period in liquid media,
some fraction of the cells could have undergone a cell cycle, meaning that our true library complexity is
likely to be less than the number of colonies we observe. Colonies were pooled in 900 ml LB-Ampicillin
and a fraction of the pool was used directly for plasmid preps to generate the plasmid library (pBAR3-L1)
(Figure 2).

1.3 Yeast lineage tag library construction

The barcode “landing pad” was inserted by replacing the YBR209W dubious open reading frame in an
S288C derivative, BY4709 with sequences derived from pBAR1 and pBAR2 by sequential homologous
recombination. Disruption of YBR209W has been previously demonstrated to have no impact on fitness [4].
Sequential homologous recombination events were required because we found bacteria are unable to tolerate
a plasmid that contains both Gal-Cre and loxP sites. First, pBAR1 sequence was amplified with the
following primers:

PEV8 = GTTCTTTGCTTTTTTTCCCCAACGACGTCGAACACATTAGTCCTACGCACTTAACTTCGCATCTG

PEV9 = GCTTGCGCTAACTGCGAACAGAGTGCCCTATGAAATAGGGGAATGCATATCATACGTAATGCTCAACCTT

where underlined sequence correspond to sequences flanking the dubious open reading frame, YBR209W.
The PCR product, containing Gal-Cre and the NatMX selectable marker, was inserted into the genome by
homologous recombination [5] to create the SHA118 strain (MAT↵, ura3�0, ybr209w::Gal-Cre-NatMX).
pBAR2 was cut with SacI and NdeI restriction enzymes and a gel fragment was isolated and transformed
into SHA118 to create SHA185. The fragment contains homologous ends to replace the genomic NatMX
marker with lox66 [2, 3], half of an artificial intron and the 3’ half of the URA3 selectable marker [6].

SHA185 was transformed with the pBAR3-L1 barcode library and plated on galactose synthetic complete
dropout plates lacking uracil. The galactose promotes Gal-Cre-induced recombination between the partially-
crippled genomic lox66 and plasmid lox71 sites, causing insertion of the plasmid into the genome, and
completing the URA3 selectable marker. Insertion of the plasmid creates two genomic loxP sites: a fully
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BY4709: 
ura3Δ

pBar1
YBR209W

Gal-Cre NatMX

Homologous Recombination

SHA118: 
ura3Δ ybr209w::GalCre-

NatMX

pBar2
Gal-Cre NatMX

Homologous Recombination

KanMX ½URA3 AI lox66

pBar3

Ligation

½URA3AI

Random primer 
library

~1012 barcodes

HygMX

lox71 BC

Gal-Cre KanMX ½URA3 AI lox66

pBar-L1 Library
~6 x105 barcodes

Selection for NatMX

lox71 BC

1) Electroporation in to bacteria
2) Selection for AmpR (on plates)

AmpR

½URA3AI HygMX

AmpR
Cre-Lox 

Recombination

Gal-Cre ½URA3 AI loxP lox66/71AI ½URA3BC

artificial intron

KanMX HygMX

SHA185: 
ura3Δ ybr209w::GalCre-
KanMX-1/2URA3-lox66

Selection for KanMX

Selection for colonies 
on gal+ uracil- plates

~5 x106 insertion events

Yeast library:
ura3Δ ybr209w::GalCre-

KanMX-1/2URA3-loxP-BC
-1/2URA3-HygMX-lox66/71

Figure 3: Schematic of barcode insertion
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functional loxP site located in the URA3 artificial intron and a fully crippled lox66/71 [2, 3] distant from
the URA3. Because transformants contain only a single functional loxP site, insertion is is unlikely to easily
reverse. Selection for URA3, and thereby the barcode residing in its artificial intron, is maintained during
the evolutions by growing in media lacking uracil. Because the plasmid library contains a fixed number of
barcodes (determined approximately by the number of bacterial insertion events), under-sampling barcodes
could result in some barcodes missing or could create large differences in the frequencies of each barcode
in the population, a problem we wished to avoid in our evolutions. We therefore plated ⇠ 5 ⇥ 10

6 CFU,
resulting in ⇠ 10 insertion events per barcode for an estimated plasmid complexity of ⇠ 5 ⇥ 10

6. LoxP
insertion is highly efficient, allowing for this number of insertion events on ⇠ 240 plates. Colonies from all
plates were pooled and stored at �80

� in 15% glycerol until beginning the evolutions.

1.4 Experimental Evolution

The lineage tag library was evolved by serial batch culture under carbon limitation in 100 ml of 5x Delft
media [7] with 4% ammonium sulfate and 1.5% dextrose. Cells were grown in 500 ml Delong flasks (Bellco)
at 30�C and 223 RPM for 48 hours between each bottleneck. Bottlenecks were performed by adding 400 µl
of the evolution to fresh media. Cell counts were performed at each bottleneck to estimate the generation
time. Contamination checks for bacteria or other non-yeast microbes were performed regularly. On the
final time point of each evolution, we sexed several clones to assure that mating had not occurred during
the evolution with an exogenous strain.

1.5 Sequencing Sample Preparation

Genomic DNA was prepared by spooling, as described [8]. A two-step directed PCR was used to amplify the
lineage tags for sequencing. Because a small fraction of the total genomic DNA yields a PCR product (⇠100
base pairs out of a 12 MB genome size), we amplified 14.4 µg of template per sample, which corresponds
to ⇠ 10

9 genomes or ⇠ 2000 copies per unique lineage tag at time zero in the evolutions. First, a 3-cycle
PCR with OneTaq polymerase (New England Biolabs) was performed in 24 reaction tubes, with ⇠600 ng
of template and 50 µL total volume per tube. Primers for this reaction were:

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNXXXXXTTAATATGGACTAAAGGAGGCTTTT

and

CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNNXXXXXXXXXTCGAATTCAAGCTTAGATCTGATA

The Ns in these sequences correspond to any random nucleotide and are used in the downstream analysis to
remove skew in the counts caused by PCR jack-potting (see Lineage Tag Counts). The Xs correspond to a
one of several multiplexing tags, which allows different samples to be distinguished when loaded on the same
sequencing flow cell. PCR product was pooled into 4 pools of 50µL using 4 PCR Cleanup columns (Qiagen)
at 6 PCR reactions per column. A second 24-cycle PCR was performed with high-fidelity PimestarMAX
polymerase (Takara) in 12 reaction tubes, with 15 ul of cleaned product from the first PCR as template
and 50 µL total volume per tube. Primers for this reaction were the standard Illumina paired-end ligation
primers:

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

and

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT

PCR product from all reaction tubes was pooled into 50 µL using a PCR Cleanup column (Qiagen). The
appropriate PCR band was isolated by E-Gel agarose gel electrophoresis (Life Technologies) and quantitated
by Bioanalyzer (Agilent) and Qubit fluorometry (Life Technologies).

6 WWW.NATURE.COM/ NATURE | 6



1.6 Lineage Tag Counts

Paired-end sequencing was performed on an Illumina HiSeq 2000. Each flow cell contained 2 to 4 mul-
tiplexed time points and 25% random genomic DNA. The genomic DNA was necessary to increase the
read complexity for proper calibration of the instrument. Sequences were analyzed using custom written
software in Python and R. Sequences were sorted by their multiplexing tags (the Xs in the primers above)
and removed if they failed to pass two quality filters: 1) The average Illumina quality score for the lin-
eage tag region must be greater than 30, and 2) the lineage tag region must match the regular expression
\D*?(.ACC|T.CC|TA.C|TAC.)\D{4,7}?AA\D{4,7}?AA\D{4,7}?TT\D{4,7}?(.TAA|A.AA|AT.A|ATA.)\D*. We
found a small fraction of barcodes with insertions or deletions in their randomized regions, which the regular
expression encompasses. The regular expression also allows for one mismatch in the 4 bases on either side
of the barcode region. One possible caveat is that a barcode that is excluded by our regular expression is
present in the population and acquires a large adaptive mutation, causing clonal interference that is invisi-
ble to our sequencing assay. However, agreement between the change in mean fitness inferred from neutral
and beneficial lineages (Figure 2, main text) suggests that we are accurately capturing the full extent of
clonal interference.

Reads from the sequencing runs of all time points from the two evolutions were pooled and the number
of occurrences of each unique read of the lineage tag region was counted (24,214,583 unique sequences of
1,576,711,485 total reads). We expected that the vast majority of unique sequences did not represent a
true lineage tag, but rather sequences with a small number of mismatches from a true lineage tag, caused
by PCR or sequencing errors.

We next clustered similar sequences to generate a set of lineage tag clusters, which are likely to consist
of one true lineage tag (at a high frequency) and many similar sequence reads (at low frequency), generally
with one or two mismatches. To generate clusters, we first considered only sequences with greater than 10
reads. We pairwise blasted (word size = 11, reward = 1, penalty = -2) each of these sequences against
every other sequence. A sequence and all sequences that blast at an e < 10

�10 (⇠ 2 mismatches) to that
sequence formed a cluster seed. Two clusters were joined if any any member (sequence) was present in both
clusters. Cluster joining was repeated until the cluster number was stable. Sequences with less than 10
reads total were then matched to existing clusters by blast, using the same criteria. This method yielded
487,922 lineage tag clusters. The arbitrary, but computationally necessary, cutoff of a minimum of 10 reads
to seed a cluster is likely to miss a few true lineage tags that begin at low frequency in the population
and never rise over the course of either evolution (either by drift or accumulation of a beneficial mutation).
However, reads that pass our filters (above) and do not eventually map to any lineage tag cluster constitute
a small fraction of the total reads (0.17%), do not vary greatly across time points in our evolutions (0.15%
– 0.19% of reads for individual time points), do not increase systematically in later time points, and are
therefore unlikely to change the conclusions of this study.

Our estimated number of 487,922 true lineage tags is roughly consistent with the the number expected
based on the complexity of our plasmid library. We counted 630,000 bacterial colonies during the plasmid
ligation (see Plasmid Random Barcode Library Construction). However, because colonies were allowed
to recover, and in some cases double, in liquid media for 30 minutes before prior to plating, a portion of
bacterial colonies are likely to contain the same barcode. Our results suggest that 27% of bacteria doubled
between electroporation and plating.

For each lineage tag cluster, we generated a consensus sequence by taking the most frequent base at
each position across all members of the cluster. We refer these consensus sequences as “lineage tags” in this
study. A position weight matrix of all lineage tags (Figure 4) shows that most randomized positions have a
relatively even proportion of each base. Constant regions at positions 1 to 6, 12, 13, 19, 20, 26, 27, and 33
to 38 are dominated by the expected base. However, some variability does exist in the constant regions, due
most likely to substitution or frameshift errors during the synthesis of the primers or PCR. To determine
if our library of lineage tags conform to theoretical expectations given the frequency of bases at each
position, we calculated the Hamming distance of each lineage tag to its nearest neighbor and compared this
distribution to that when the base at each position is randomized across all reads (Figure 5). Distributions
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Figure 4: Position weight matrix for the barcodes inserted shows a relatively equal proportions of each nucleotide
at each random position.
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real barcodes
randomized barcodes

Figure 5: The distribution of hamming distances between the barcodes inserted (blue) and the expected distribution
were they randomly placed in hamming space (red).

are similar, although randomizing bases results in slightly greater nearest neighbor distances, suggesting
that a large fraction of the variability in the constant regions is due to frameshifts. That is, preserving the
frame results in closer nearest neighbor distances than disrupting the frame through randomization.

One possible caveat of using random barcodes is that sequencing errors from an abundant lineage tag
could erroneously contribute to read counts of a lineage tag with a similar sequence. This could result in
“piggy-backing”: as an adapted lineage rises in frequency, closely-spaced lineage tags also rise in frequency
and are erroneously interpreted as containing a beneficial mutation. Yet, we find that the vast majority of
lineages tags are at least 4 mismatches away from a nearest neighbor (97%, Figure 5). Thus, a sequencing
read is unlikely to be assigned to the the wrong lineage tag unless it contains 3 or more errors. By measuring
the frequency of reads that do not match exactly to any lineage tag, we conservatively estimate the per-
base error rate of our experiment to be 0.18%, consistent with previous reports [9,10]. Thus, a conservative
estimate of our rate of single base error per read is 6%. At this rate, the frequency of reads with 3 or
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Figure 6: Duplicates per generation for each replicate

more errors in the 20 random nucleotides of each barcode (⇠ 2 ⇥ 10

�4) does not constitute a large enough
fraction of the reads to impact our results. For example, an adaptive lineage that expands to 6 ⇥ 10

6 cells
(⇠1% of the population in our experiments, the largest lineages we observe) would yield only ⇠ 1300 triple
errors, with only a handful of these reads erroneously mapping to to the same incorrect lineage tag.

For each time point, we matched all sequencing reads onto our set of lineage tag clusters as an initial
count of the number of occurrences of each lineage tag. One source of bias in these counts that we wanted
to avoid is PCR jack-potting or other non-linearities between the amount of template for a lineage tag and
the number of sequences observed for that tag. We removed these errors by attaching two random 8mers
to each template molecule in the first few rounds of PCR (see Sequencing Sample Preparation). Because
the total sequence space of two random 8mers is large (⇠ 4 ⇥ 10

9 possibilities), it is unlikely that any
two template molecules from the same time point that contain the same lineage tag will be attached to
identical pairs of 8mers. Thus, sequence reads for a lineage tag that contained the same pair of 8mers were
counted as PCR duplicates and removed from our final counts. Overall, the extent of PCR duplicates was
nominal in our experiments (less than 2.4% of all reads that match a lineage tag cluster), suggesting that
template abundance and primer annealing efficiency was sufficient in our protocol. We found no evidence
that the number of PCR duplicates changed systematically over the course of either experiment (Figure 6)
or that lineage tags that became abundant contained more duplicates as might be expected if the number
of random 8mer template tags were limiting.

1.7 Fluctuation Test

Fluctuation tests for resistance to canavanine due to mutations in the CAN1 locus were performed as
described in [11], except all growth was performed in 5x Delft media with 4% ammonium sulfate and 1.5%
dextrose. The per base per generation mutation rate of the barcode library (3.66 ⇥ 10

�10) is similar to
an S288C control strain (4 ⇥ 10

�10, this study), and previous reported estimates for S. cerevisiae (1.73 ⇥
10

�10 to 6.44 ⇥ 10

�10) [11, 12]. Fluctuation tests from three different colonies (and presumably different
barcodes) of the barcode library have similar per base per generation mutation rates (4.4 ⇥ 10

�10, 4.21 ⇥
10

�10, 2.37 ⇥ 10

�10).
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2 Validation of fitness measurements using fluorescent labels

The fitness of clones that were identified as adaptive in replicate E2 were independently validated as follows.
BY4709, which is the ancestral strain to the barcode library, was transformed with the plasmid pGS63 [4].
This generates an ancestral clone with a genomically-integrated YFP construct to use as a fluorescent
reporter when conducting fitness assays against the non-fluorescent adaptive clones. Multiple YFP tagged
transformants were competed against neutral lineages to ensure they had ancestral fitness and had not
picked up a deleterious mutation during the transformation process before using them in competition
against adaptive clones. Additionally, clones were isolated from the frozen stock of generation 88 of the
replicate E2. The barcode on each clone was Sanger sequenced for identification, and the expected fitness of
each clone was identified from the population sequencing analysis. We chose 26 putatively adaptive clones
and 5 putatively neutral clones from this sample for fitness validation.

Each of the test clones and the YFP clone were streaked out from freezer stock onto 5x Delft [7] agar
plates and grown for 3 days. Colonies were then inoculated into 3mL liquid 5x Delft media [7] with 4%
ammonium sulfate and 1.5% dextrose and grown in test tubes in a roller drum at 30C for 2 days, after
which 400ul was transferred to 100mL of the same media in 500mL Delong flasks (Bellco) and grown in a
platform shaker at 30C for 2 days at 223 rpm. This final set of conditions is identical to the conditions the
strain was evolved in. 80µl of each test clone was mixed with 720µl of the YFP clone in eppindorf tubes.
One additional tube containing no test clones and 800µl YFP culture was also made. 400µl of each mixture
(including the YFP only culture) was inoculated into evolution condition flasks, and the remaining 400µl
was used for flow cytometry analysis. Each flask was grown for 2 days, after which 400µl of each culture was
transferred to fresh flasks and a further 400µl was used for cytometry analysis. This protocol was repeated
for a total of 3 transfers. A final cytometry time point was taken 2 days after the last transfer, resulting in
five total time points (the initial mixture, at each of the three transfers, and after the last transfer reaches
saturation) covering 32 generations (8 generations per 2 day growth phase).

For each cytometry time point, the 400µl samples were inoculated into 2ml of 5x Delft media [7] with
4% ammonium sulfate and 1.5% dextrose and grown in test tubes on the roller drum for 2 hours. 50µl of
each test tube culture was diluted into 450µl of sterile water, which was then used for cytometry analysis.
Cytometry-ready samples were kept at 4C for up to 4 hours while waiting for machine access. Each
test sample was analyzed for 10,000 events on a BD-FACScan analyzer (Stanford, Stanford Shared FACS
Facility) which was calibrated with beads before each use. Events which reached the maximum FSC value
were not counted, as they likely represented multi-cell agglomerates. The pure YFP sample was similarly
analyzed for 50,000 events. We utilized the BluFL1 (560nm short pass splitter, 525/50 band pass filter)
and BluFL2 (640nm long pass splitter, 615/25 band pass filter) filters for the fluorescent analysis. After
sampling, events that had FSC values less than 11 were excluded, as these likely represent non-living cells.
For the events that passed this minimum criteria, we computed the percentage of fluorescent cells. Previous
analysis with known ratios of fluorescent to nonfluorescent cells had established a threshold of

blu2 < blu1 ⇥ 1.65 � 5 and blu1 > 6.5 (1)

for differentiating fluorescent cells from nonfluorescent cells. As not all cells containing the fluorescent tag
actually fluoresce, we use the pure YFP culture that was grown and sampled alongside the test cultures
to calibrate the percentage of nonfluorescent YFP cells using a simple linear model independently for each
sample time point.

The number of observed non-fluorescent cells that we expect to contain YFP = The observed number of
fluorescent cells in the mixture ÷ the percentage of pure YPF cells that fluoresce ⇥ the percentage of pure
YFP cells that do not fluoresce. We then subtract the expected number of YFP non-fluorescent cells from
the observed number of nonfluorescent cells to get the true number of nonfluorescent cells in the culture.

For each strain, the natural log of the percent of nonfluorescent cells was plotted against the number
of generations that had elapsed by that time point (0, 8, 16, 24 and 32). The slope of the linear fit is the
relative fitness advantage of the test strain compared to the YPF-tagged ancestral strain.
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Theory and Data Analysis

3 Useful numbers and notation

What Value Symbol

Fitness effect of mutation ⇠ 2.5% � 15% s

Establishment time of mutation [�100, 50] ⌧
est

Occurrence time of mutation [�100, 50] ⌧
mut

Variance in offspring number(per generation) ⇡ 3.5 2c

Cells at bottleneck ⇡ 7 ⇥ 10

7 N
b

Cells at saturation ⇡ 1.7 ⇥ 10

10 N
s

Effective population size ⇡ 6 ⇥ 10

8 N
e

Unique barcode sequences ⇡ 500, 000 L

Sequencing reads per time point ⇠ 3 ⇥ 10

7 R

Median initial lineage size (at bottleneck) ⇠ 100 n
b

Median initial lineage size (effective) ⇠ 10

3 n
e

Range of lineage sizes (at bottleneck) ⇠ 10 � 600 —

Mean reads per barcode ⇠ 50 r̄

Generations between time points ⇡ 8 T
cyc

Dilution factor at bottleneck 1/250 �

Generations of evolution ⇠ 150 —

Adaptive lineages ⇡ 25, 000 (E1, t = 112) —

Adaptive lineages common across replicates ⇡ 6, 000 —

Mean fitness increase ⇡ 6% (E1, t = 112) x̄(t)

Table 1: Useful numbers and symbols for quantities commonly used in the analysis.
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Time point 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

Depth in E1 (⇥10

6) 222 – 84 – 77 51 86 – 83 63 58 54 48 56 53

Depth in E2 (⇥10

6) 222 58 – 55 – 26 30 51 30 22 – 20 32 – –

Table 2: Read depths across time points for the two replicate evolutions. Only these time points are used in the
analysis.

4 Statistical dynamics of beneficial mutations

4.1 Establishment probability and establishment time

A single beneficial mutation that has a (small) fitness advantage s relative to a constant mean fitness has
on average 1 + s offspring per generation. In the absence of variation in offspring number, the descendants
of a single founder would grow exponentially in time as (1 + s)t ⇡ est. However, if there is some variation
in offspring number around the mean, the dynamics is stochastic and the mutation sometimes fluctuates
to extinction (drifts out). We consider a general case where the variance in offspring number is 2c, with c
a constant. If it does not go extinct, the mutant population will eventually reach large enough numbers to
grow exponentially and essentially deterministically: i.e. it “establishes". The relative likelihood of these
outcomes and the number of cells, n(t), that share the beneficial mutation given that it survives, can be
computed by solving for, and inverting, the moment generating function for a birth-death process of a single
founding beneficial mutation with fitness effect s entering at time t = 0 (see Section 13.1 and [13]). The
probability of surviving drift and “establishing” in the population is

Pr(establishing) ⇡ s/c (2)

with 2c equal to the (effective) variance in offspring number for a single cell per generation; the probability
of extinction is thus 1 � s/c. At long times (t � 1/s) the mutant population grows as

n(t) ⇡ ⌫
c(est � 1)

s
with the probability density of ⌫ ⇢(⌫) ⇡

⇣
1 � s

c

⌘
�(⌫) +

s

c
e�⌫ , (3)

the delta-function part representing extinction.
Typically s/c ⌧ 1 so the majority of mutations that enter the population drift to extinction before

establishing. If the beneficial mutation survives to reach n copies in the population, and since all cells with
the mutation are independent, the probability of extinction becomes (1 � s/c)n ⇠ e�ns/c. Therefore, if the
mutant population reaches substantially more than n & c/s copies it is unlikely to go extinct:

n
est

⇠ c/s (4)

is the typical size one a mutation must reach in order to establish. If it does establish, the fluctuations in
n(t) at later times will be small: the value of the coefficient ⌫ is thus primarily determined by fluctuations
before the mutant establishes. It is convenient to define the “establishment time”, ⌧

est

, as the time at which
the adaptive mutant population would have had a size of ⇠ c/s cells had it grown exponentially with no
fluctuations from then on as shown in Fig 7A. From (3) this gives

⌫ = e�s⌧ and the probability density of ⌧ ⇢(⌧)d⌧ = exp

�
�s⌧ � e�s⌧

�
s d⌧. (5)

For a mutation that enters the population with ⌧
mut

= 0 the most likely establishment time is ⌧
est

= 0, and
the width of its distribution is ⇠ 1/s. The establishment time therefore roughly corresponds to the true
time of occurrence of the mutation, ⌧

mut

, with errors of ±1/s generations as shown in Figure 7B. We point
out however that the distribution is asymmetric: mutations with establishment times substantially earlier
than �1/s are far less likely than mutations with establishment times substantially later than +1/s.
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Figure 7: (A) 50 simulated trajectories (light red) of beneficial mutations with a fitness effect s = 0.05 that were
present in a single copy at t = 0. Each generation a cell has a number of offspring drawn from a Poisson distribution
with mean (1 + s). The long term growth of cell number is of the form n ⇡ (c/s) exp(s(t � ⌧

est

)), where c = 0.5 is
half the variance in offspring number and s the fitness advantage. The typical trajectory (dark red) of a mutation
destined to survive grows faster than exponentially during drift phase (t . 1/s). The establishment time, ⌧

est

is the
time at which the cells would have reached 1/s cells were they to have grown exponentially at rate s throughout their
trajectory (angled dashed line intercepting horizontal dashed line). (B) A histogram (gray) of the establishment time
⌧
est

for 5,000 simulated trajectories. The black curve is the theoretical expression from Eq. 5. The most likely ⌧
est

is the occurrence time of the mutation ⌧
mut

(zero in this example) with errors of ±1/s that arise from the stochastic
jumps taken while at low numbers. The distribution is asymmetric: establishment times earlier than �1/s are less
likely than establishment times later than 1/s. The 95% confidence interval occurs between �20 < ⌧

est

� ⌧
mut

< 50

in this case.

4.2 Establishment time, ⌧
est

, for mutations fed from a constant population

Consider now a constant population of n0 neutral cells that can feed beneficial mutations — all with fitness
advantage s — at a rate U

b

. This is the process by which mutations enter our barcoded lineages. The total
number of beneficial cells that are descendants of this initial subpopulation will grow exponentially as

n(t) ⇡ ces(t�⌧

est

)

s
(6)

however now the establishment time ⌧
est

must contain information about how rapidly mutations — possibly
many of them — enter as well as how they fluctuate once they enter. The statistics of ⌧

est

in this case are
obtained by solving the mutation-birth-death process as outlined in (13.1). The result is similar to that of
a single mutation, with the distribution of ⌧

est

altered to reflect the process of mutation

⇢(⌧)d⌧ =

sd⌧

�(n0U
b

)

exp

�
�n0U

b

(s/c)⌧ � e�s⌧

�
. (7)

The trajectories that result from such a feeding process are shown in Figure 8A. Here a feeding population of
n0 = 1000 cells feeds mutations at a rate U

b

= 10

�4 per cell per generation into a fitter class (s = 0.05) that,
if successful in establishing, grow exponentially. Such a feeding process produces a broad distribution of
establishment times Figure 8B. The median time can be calculated by asking when the cumulative number
of reproductions (n0t) multiplied by the probability of mutating and establishing (U

b

(s/c)) is order 1/2.
There are two important distinctions from the single mutant case in Figure 5. First, all trials will, given
long enough time, succeed in obtaining an established mutation because the feeding population is constant
and continues to feed regardless of the fate of the mutations (this explains why more lines in the figure
increase exponentially). Second, the distribution of ⌧

est

is highly asymmetric: while establishment times
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Figure 8: (A) 50 simulated trajectories of the number of cells with a beneficial mutation (s = 0.05) that occur
via mutation from a pool of n0 = 1000 cells at rate U

b

= 10

�4. Each generation a cell has a number of offspring
drawn from a Poisson distribution with mean (1 + s). The long term growth of cell number is again of the form
n ⇡ (c/s) exp(s(t � ⌧

est

)), where c = 0.5 is half the variance in offspring number, s the fitness advantage. The
establishment time, ⌧

est

is again the time at which the cells would have reached 1/s cells were they to have grown
exponentially at rate s throughout their trajectory (angled dashed line intercepting horizontal dashed line). (B) The
distribution of establishment times from 5,000 simulations with the same parameters as (A). The black curve is the
predicted distribution from Eqn. 7. The median time can be easily estimated by realizing the cumulative number of
reproductions multiplied by the probability of establishment must be ⇠ 1/2 i.e. n0Ub

(s/c)t ⇡ 1/2 which here gives
t ⇡ 50 generations. At positive ⌧

est

the distribution decays off with decay time 1/(n0Ub

(s/c)) which in this case is
⇡ 100 generations.

earlier than �1/s are unlikely, at positive establishment times the distribution decays exponentially with
decay time 1/(n0U

b

(s/c)) which can be very long. In the above simulations the feeding rate was low enough
that n0U ⌧ 1, and as one can see, the emergence of the mutants is stochastic. If however one considers
the total population NU � 1 and the emergence of the first mutants becomes essentially deterministic as
we now discuss.

4.3 The distribution of mutation rates µ(s), the deterministic approximation, and, “predominant” s

The previous discussion assumed all mutations were of the same effect size s. In reality there will be
different mutation rates to different fitness effects s, which we capture with the distribution µ(s):

Mutation rate to range [s, s + ds] = µ(s)ds (8)

the total beneficial mutation rate is then
Z 1

0
µ(s)ds = U

b

(9)

however, as we discuss in the following paragraph, the total beneficial mutation rate can be a misleading
quantity. The reason it can be misleading is that not all beneficial mutations are “created equal”. The
range of fitness effects that drive the increase in mean fitness (called "predominant" s range) can be a small
fraction of the total — especially at later times. To see why this is the case we consider the growth of cells
in fitness range [s, s + ds].
Deterministic approximation. Consider the constant feeding process of the previous section again. The
growth of the mutant class is determined by two things: the fitness of the mutant, s, and the number
of independent mutations that contribute to the expansion ⇡ Nµ(s)ds (rationale: there is a window of
⇠ (c/s) generations in which mutations contribute significantly to the expansion, mutations establish at a
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rate Nµ(s)ds(s/c) during this time so that the product is Nµ(s)ds). If the population size is large enough
then many independent mutations contribute to the expansion

Nµ(s)ds � 1 (10)

then the stochasticity is small and the expansion of the class is close to deterministic (the reason being one
is averaging over many mutations, that are individually stochastic, but collectively almost deterministic).
In the case where the expansion of cells with fitness in the range [s, s + ds] is deterministic, the fraction of
the total population f(ds, t) with fitness in the range [s, s + ds] is easily calculated

f(ds, t) =

µ(s)ds

s
[est � 1]. (11)

This is an important result, and is used later to infer the spectrum of mutation rate as a function of fitness.
It links a quantity of interest (the distribution of mutation rates across fitness effects) to an easily measured
quantity (the fraction of cells in a given fitness range). Notice that it does not depend on the details of the
growth process (e.g. population size, N , or variance in offspring number, 2c) because these quantities do
not affect the mean growth.

A key insight from this deterministic approximation is the importance of the product

µ(s)est (12)

in determining which fitness effect is most abundant in the population, and therefore which range of s
actually matters in driving the increase in fitness. Mutations with small fitness effects might be more
common, but because they grow exponentially more slowly, they are rapidly outcompeted by rarer large
effect mutations. How long this takes depends on the shape of µ(s), however one can use this argument
to define the “predominant” fitness effect s̃(t) that is most abundant in the population at time t and
the mutation rate to this s̃ which we denote as ˜U(t), both of which are functions of time (see Section
11.1 for details). A simple example is if the distribution of mutation rates to fitness effects falls off as a
Gaussian, µ(s) ⇠ exp(�(1/2)(s/�)

2
). Then exponent in the product in 12 becomes (1/2)(s/�)

2
+ st which

is maximized at

s̃ = �2t (13)

so that the predominant fitness effect in this case increases linearly in time. The deterministic approximation
only holds when many mutations contribute to the expansion of a fitness class, i.e. Nµ(s)ds � 1. At late
times, the value of s̃(t) will be large enough that the mutation rate to it ( ˜U(t)) will be small enough that
N ˜U(t) . 1. Beyond this time the dynamics are stochastic, because only of order one mutation drives
the mean fitness in each fitness class. In the experiment we observe this transition: from a deterministic
expansion of a large number of mutations early on to a more stochastic expansion of a few mutations later.
We discuss this effect in more detail in Section 11.1.

4.4 Offspring distribution through a cycle

In the previous section we saw that, provided Nµ(s)ds � 1, the total number of mutant cells in a given
fitness range is independent of the population size, changes in population size over time, or details of the
growth-process of cells e.g. variance in offspring number. The same is not true if one is interested in the
number of mutations that establish or on size of neutral fluctuations. The probability of mutations estab-
lishing in the population and the size of neutral fluctuations both depend on the details of the population
size over time and on the variance in offspring number.

Variance in offspring number and neutral fluctuations. In our experiment cells are bottlenecked and
then grown up through T ⇠ 8 generations. The average number of offspring for a single neutral cell through
this cycle is one. The variance in offspring number through the cycle we denote by 2c ⇡ 3.5 (determined
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in 5.4). This variance has contributions from both Poisson noise of the bottleneck (⇡ 1) and from the
variations in growth through the cycle (⇡ 2.5). As we show below this variance is larger than would be
expected by purely Poisson noise sampling each generation and is likely to have a substantial contribution
from variations in the lag time to start dividing after dilution into fresh medium: these are typically of
order one generation.

Although we can only measure the variance in offspring number through a cycle, one can ask what our
measured values for 2c = 3.5 corresponds to for the average variance in offspring number per generation.
Consider each doubling, where the expected number of cells increases by a factor of two. If there were
Poisson noise each generation, the variance in number of offspring in the first generation is 2 but this grows
up through T � 1 generations. The variance in the second generation is 4, which is scaled up though T � 2

generations and so on. Including the bottleneck of � = 2

�T at the end of the cycle we see that the variance
in cell number across the entire cycle is

var(cycle of T generations ) ⇡ �

2
⇣
2 ⇥ 2

2(T�1)
+ 4 ⇥ 2

2(T�2)
+ 8 ⇥ 2

2(T�3)
+ ...256 ⇥ 2

2(T�8)
⌘

+ 1 (14)

⇡ (1/2 + 1/4 + 1/8 + ...1/256) + 1 (15)
⇡ 2 (16)

where the last term in the first two lines is the noise introduced at the bottleneck. The variance in offspring
number of a single cell per generation assuming Poisson noise each generation is therefore of order 2/T ,
whereas our measured value would be 3.5/T . The scaling with 1/T is important. Because cells are permitted
to expand exponentially for T generations, neutral fluctuations per generation are smaller by a factor of
1/T , which in our case is significant. One can think of this either as a rescaling of the effective variance in
offspring number

c ! c/T (17)

or equivalently as a rescaling of the population size

N
b

! N
e

= N
b

T, (18)

the conventional effective population size for drift.
Establishment of de novo beneficial mutations. The rate at which mutations establish in the population

also depends on T . The probability of a beneficial mutation entering during the first doubling of the cycle
and surviving the bottleneck is ⇡ N

b

U
b

. It is twice as likely to occur during the second doubling, but half
as likely to survive the bottleneck, so the probability of a mutation arising at some point in the cycle and
being present as a single cell at the start of the next cycle is largely independent of where in the cycle it
arises, always being proportional to N

b

U
b

. Consider now a beneficial mutation present in a single copy at
the beginning of a cycle. Through the cycle the mean increase in abundance is exp(sT ) ⇡ 1 + sT with the
variance (see above) of order c. Using the expression from Eq. 2 we therefore see that, provided sT ⌧ 1

the establishment probability of a mutation becomes

Pr(establishment) ⇡ 2 ⇥ Mean growth rate
variance

⇡ sT

c
(19)

which is consistent with our previous rescaling of c ! c/T . It should be noted however that this approx-
imation breaks down if sT ⇠ 1. The establishment probability for mutations with s > 1/T that are
present at the beginning of the growth cycle approaches unity. Under our growth cycle, because variance
is reduced by a factor of T , de novo mutations establish with a probability that is scaled up by a factor
of T . However, for the same reason, the size of any given mutation is typically reduced by a factor of T .
The expected number of cells, which is the product of the number of mutations and their population size is
therefore independent of the rescaling, which explains why in the deterministic approximation these details
do not enter. To verify the above we performed simulations with different cycle lengths T and measured
the number of mutations entering the population, the results are shown in Figure 9.
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Figure 9: Rank-⌫ plots for all mutations that enter after ⇠ 60 generations from simulations with N
b

= 10

7,
U

b

= 10

�4, s = 0.025 in which cells are Poisson sampled with mean 2(1 + s) for T generations then Poisson sampled
with mean 2

�T on the T th generation. Mean growth rates per generation are therefore 1+s. ⌫ is defined as n/(est/s).
The colors are different T : from 1-8 (red-blue). Although mean growth rates are the same, the distribution of sizes
of mutants changes. The expected distribution of ⌫ for constant N is e�c⌫/(c⌫�(NU))d⌫. The black theory curves
show the rank-⌫ plots predicted by this expression if we rescale c ! c/T (or equivalently rescale N ! NT ) as in the
text. The simulation only allows single mutants.

Effective population size. In the analysis that follows it is sometimes necessary to use a population size
in calculations. The most common is in the definition of the establishment time:

n(t) = (c/s) exp (s(t � ⌧
est

)) (20)

To infer a ⌧
est

we therefore need to relate frequencies (what we actually measure) to number. To do this we
use the effective population size, N

e

= TN
b

(for the population) or n
e

= Tn
b

(for an individual lineage).
We use this population size rather than the bottleneck size because it is this “effective” population size that
correctly predicts the rate at which mutations enter the population which is the relevant property for the
statistics of establishment times.

4.5 Multiple mutations and clonal interference within a lineage

Within a small lineage of n0 cells it is possible that further beneficial mutations enter after the first one
has established. This can occur in two distinct ways:

1. Clonal interference within lineage. If the population of n0 cells or the mutation rate U
b

are large
enough, other independent single beneficial mutations will occur inside the lineage before the first has
reached a size of ⇠ n0 (clonal interference). This is undesirable because the expansion of the lineage
will be driven by multiple independent beneficial mutations.
Comparing Eqn. (5) with Eqn. (7) clonal interference effects within a lineage are important when
n0U

b

& 1. For n0U
b

⌧ 1 beneficial mutations are rare so that the total number of cells with the
beneficial mutation is dominated by the first one to establish. However, for n0U

b

� 1 the first n0U
b

mutations contribute significantly to the overall expansion and “interfere”. To avoid clonal interference
within a lineage and to be sure that any expansion of a lineage we measure is due to a single beneficial
mutation lineage sizes must be small enough that n0U

b

⌧ 1. What is the relevant U
b

? In principle
one should use the total beneficial mutation rate for U

b

to completely avoid clonal interference within
a lineage, however, in practice it takes at least of order 1/s generations for a mutation to reach
establishment. Since we confine most of our analyses to the first ⇠ 150 generations of evolution,
mutations with s . 0.01 are largely irrelevant. This is discussed in more detail in Section 9.1. For
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the time being we consider a reasonable range of U
b

2
⇥
10

�6, 10

�4
⇤

which means that lineage sizes
must be smaller than

n0 .
⇢

10

6 for U
b

= 10

�6

10

4 for U
b

= 10

�4 (21)

Because multiple mutants involve how likely it is that mutations establish, the relevant lineage size
we should use for comparison is the “effective” lineage size n

e

= n
b

T which in our experiment is ⇠ 10

3

cells. The product is therefore n
e

U
b

⇠ 0.001 � 0.1. Lineages are therefore well within the regime
where expansion of the lineage is driven by a single beneficial mutation.

2. Double-mutants. Further beneficial mutations can also occur by one of the descendants of the first
beneficial mutation acquiring a second beneficial mutation, creating a double-mutant. If the sin-
gle mutant grows as (c/s)es(t�⌧1), the probability of a double mutant entering the population and
establishing will be appreciable after a time ⌧2 at which

U
b

⇥ (s/c) ⇥
Z

⌧2

0
(c/s)es(t�⌧)dt ⇠ 1 (22)

Giving

⌧2 ⇠ ⌧1 + (1/s) log(s/U
b

) (23)

For s ⇠ 0.05 and U
b

2
⇥
10

�6, 10

�4
⇤

(consistent with out later inferences) double mutants will typically
emerge ⇠ 180 � 220 generations after single mutants. Since our experiment is confined to the first
⇠ 150 generations the number of double mutants is therefore expected to be small. We can quantify
how many of the observed adaptive lineages are likely to be double mutants in the following way.
Consider a lineage that has accumulated a beneficial mutation which is growing as

n1(t) =

ces1(t�⌧1)

s1
(24)

In order for the observed increase of the lineage to be due to a double mutant two things must be
true: (i) a double mutant must have established and (ii) it must have grown to (at least) as large a
size as the first mutant (if not we would still largely measure the effect of the first mutant). If the
double mutant then grows as

n2(t) =

ces2(t�⌧2)

s2
(25)

The condition that the second mutant be larger than the first means that

⌧2 <
t + ⌧1
(s2/s1)

=

t + ⌧1
2

(26)

where we have assumed that double mutants have a fitness s2 = 2s1. Considering the typical estab-
lishment time of early single mutants in the range of �100 < ⌧1 < �50, this means the establishment
time of the double mutant must be close to zero or even negative. The probability that a double
mutant establishes before this time is

P

✓
⌧2 <

t + ⌧1
2

◆
=

U
b

s2
s21

e�s1⌧1 ⇡ 10

�2 (27)

(putting in typical values of U
b

⇡ 10

�5, ⌧1 ⇡ �100 and s ⇡ 0.04). Of the ⇠ 25, 000 observed mutations
it is unlikely that more than ⇠ 500 are double mutants. Given we observe ⇠ 3, 000 � 5, 000 in the
high fitness range (s > 5%) we conclude that most of these are still single mutants.
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Although the fraction of adaptive mutant lineages that have acquired a second mutation will be
small, the total number of double mutant cells can become large before the single mutants collectively
take over the population. For example if the mutations all had the same fitness increment, in the
deterministic approximation the fraction of the population that are double mutants is

f
double

⇡ 1

2

U2
b

/s2e2st ⇡ 1

2

f2
single

. (28)

Although this deterministic approximation breaks down because NU2
b

/s ⌧ 1, one does still expect
that the double mutants will be a substantial fraction of the population soon after the single mutants
begin to dominate, though in our case this occurs at t > 150 generations.

0 50 100 150 200
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Figure 10: Simulated trajectories of initially neutral lineages (blue, n0 = 100 cells) that feed beneficial mutations
(red) with fitness s = 5% at a rate U

b

= 10

�5. Beneficial mutations can themselves accumulate a further s = 5%

mutation becoming a double mutant with a total fitness advantage of 10% (green). Most lineages either never
accumulate a beneficial mutation or do so, only for it to drift out. In the cases where the beneficial mutation
establishes and grows exponentially, there is a window in which the expansion of the lineage is dominated by the
single mutant, since any double mutant that enters has not had long enough to overtake the single mutant.
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5 Noise model

To assign likelihoods to barcodes containing beneficial mutations we need an error model describing how
likely trajectories are in the absence of any mutation. This depends on variations in abundance introduced
through various processes involved in measurement including: sequencing, extraction and amplification as
well as the stochastic fluctuations though multiple growth-dilution cycles. In the following sections we
outline how to quantify each of these.

5.1 Sequencing noise

The simplest approximation is that sequencing introduces binomial (or Poisson) sampling errors in frequen-
cies with variance Rf(1�f) ⇡ Rf . The difference between binomial and Poisson are negligible since f ⌧ 1.
To test this hypothesis we consider f (the true frequency of the barcode in the DNA sent to the sequencer)
and ask for the statistics of the joint distribution P (r1, r2|R1, R2) from two independent sequencing runs
with R1 and R2 total reads but the same DNA prep (so that f is the same for both, Figure 11). Under
some prior probability density ⇢(f) we have

P (r1, r2) =

Z 1

0
P (r1|f)P (r2|f)⇢(f)df (29)

Substituting in the standard form for the Poisson distribution we find

P (r1, r2) =

Rr1
1

r1!

Rr2
2

r2!

Z 1

0
f r

exp(�fR)⇢(f)df (30)

where r = r1 + r2 and R = R1 +R2. We notice that multiplying and dividing by r!/Rr we can write this as

P (r1|r)P (r) =

✓
r

r1

◆✓
R1

R

◆
r1
✓

R2

R

◆
r�r1

Z 1

0

(fR)

r

exp(�fR)

r!
⇢(f)df

| {z }
=P (r)

(31)

For the Poisson distribution (and for the binomial), the distribution of r1 conditioned on the sum r = r1+r2
is binomial, with probability p = R1/R independent of the prior. Taking logs, using Stirling’s approximation
and keeping only terms that have an r1 dependence we have

ln P (r1|r) = r1 ln

✓
p

r1

◆
+ (r � r1) ln

✓
1 � p

r � r1

◆
(32)

Figure 12 compares this expression from Eq. 32 to experimental data from independent sequencing runs
from the same DNA prep. The plots show that errors introduced by a finite number of reads at the sequencer
are very well approximated by a Poisson sampling.

f
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r2R2
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n
b

q
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M
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M
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Figure 11: A single sample has DNA extracted and amplified but sent to the sequencer on two independent runs.
A barcode present at frequency f in the common DNA pool is then sampled R1 or R2 times total with mean R1f
or R2f
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Figure 12: Distributions of numbers of reads r1 read on a second sequencing run for barcodes that were read a
total of r = r1 + r2 times across both sequencing runs. The total read depth on the first run is R1 = 2.66⇥ 10

7 while
on the second it is R2 = 2.95 ⇥ 10

7. Theoretical curves are produced assuming Poisson sampling with mean r1/R.
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Figure 13: A single pool of cells is independently prepped to extract and amplify DNA (modeled as a sampling to
M

pcr

, which is a free parameter) then sent to the sequencer on two independent runs (modeled as samples of size R1

or R2, which are measured quantities)

5.2 Sequencing + Amplification noise

If the DNA is extracted and amplified independently in addition to being sequenced independently, there
is additional noise due to the extraction / amplification (Figure 13). The distribution of reads r that
result from a barcode present at frequency f in the population that goes through a DNA extraction and
amplification followed by sequencing is modeled using a form similar to that derived in Section 13.3 for the
distribution from stochastic drift:

P (r|a) ⇡

s
a1/2

4⇡br3/2
exp

"
�(

p
r � p

a)

2

b

#
(33)

where r is the observed number of reads, a = Rf is the mean number of reads expected and b = 1/2(1 +

R1/Mpcr

) controls the variance (�2
= 2ab = Rf(1+R/M

pcr

)). We use M
pcr

to control the additional noise
introduced by the extraction and amplification process, treated as an additional sampling of size M

pcr

, the
magnitude of which we can tune. The additional noise term can then be understood by realizing that, for
a barcode at frequency f , the sampling of M

pcr

molecules introduces a variance in frequency of magnitude
f/M

pcr

. When this is read at the sequencer R1 times, this translates to a variance of magnitude R2
1f/M

pcr

hence the form of the noise term term. Setting M
pcr

! 1 recovers the correct mean and variance from
sequencing alone that was worked out in the previous section.
Why do we use this form for the distribution, instead of a Gaussian?. While our distributions are controlled
only by a mean (Rf) and a variance (Rf(1+R/M

pcr

)) fitting a Gaussian distribution from these parameters
would be the wrong thing to do. Our data strongly suggests (see Figure 15) that far above the mean the
probability decays closer to exponentially (exp(�r/b)) — as is expected both for Poisson sampling and for
neutral drift of the cell populations as analyzed in section 13.3 — than as a Gaussian (exp(�r2/ab)). This
makes a significant difference far in the tail of the distribution, which is particularly important in our case
since we need to distinguish rare neutral events from beneficial ones.

Using the distribution in Eqn. 33 we can calculate the joint distribution for reads r1 and r2 from two
independent amplifications and sequencing runs:

P (r1, r2) ⇡
Z

P (r1|f)P (r2|f)⇢(f)df (34)

Although we do not know f for any one barcode, its distribution is very close to being exponential with
a decay length of ¯f ⇡ 2 ⇥ 10

�6 (Figure 14), which we use as our prior. This decay length corresponds to
a “typical" initial lineage size of ⇠ 120 cells at bottleneck. We can therefore compute P (r1, r2) from the
integral in Eqn. 34 setting the parameters

a1 = R1f b1 = (1/2)(1 + R1/Mpcr

) (35)
a2 = R2f b2 = (1/2)(1 + R2/Mpcr

). (36)
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Figure 14: The initial distribution of barcode frequencies by pooling all ⇠ 222 million t0 reads is approximately
exponential over a large range with decay length ¯f ⇡ 2 ⇥ 10

�6.

The variance in frequency has an additional contribution with magnitude 1/M
pcr

to account for the ex-
traction / amplification noise. We can use this as a free parameter and fit it to see how much additional
noise is introduced by DNA extraction and amplification. These best fits are shown in Figure 15 (black
line) compared to the case where there is only sequencing noise present (dashed line). The additional noise
due to DNA amplification is equivalent to an additional sampling of M

pcr

⇡ 7.3 ⇥ 10

7. Comparing this
to the typical sampling introduced by reads at the sequencer (where R ⇡ 3 � 5 ⇥ 10

7) we see that DNA
amplification typically introduces about half as much variance in read numbers compared to the sequencing.
Crucially, the DNA amplification does not appear to result in a substantially longer tail as could potentially
have occurred from variable amplification biases.

Total errors in frequency measurement. The above analysis of the two factors contributing to noise in
barcode frequencies inferred at a given time point show that errors in frequencies are

�f

f
⇡ 1p

f

✓
1

R
+

1

n

◆1/2

⇡ 2 ⇥ 10

�4

p
f

(37)

Barcodes are initially at a frequency of ⇠ 10

�6 meaning errors in frequency are ⇠ 20%. However if lineages
become adaptive and increase in frequency (adaptive linages typically have f & 10

�5 � 10

�4) errors fall to
the few percent range.
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Figure 15: Slices through the joint distribution of reads P (r1, r2) for two samples that have been prepped to
extract and amplify DNA independently and then and sequenced independently. The measured distribution across
two independently prepped samples (solid curve) is clearly wider than would be predicted by sequencing noise alone
(dashed curve). The additional variance amounts to an effective sampling of size 7.3 ⇥ 10

7 which means the DNA
extraction / amplification adds approximately half the variance typically introduced by sequencing (which typically
has a sample size of R ⇠ 3 ⇥ 10

7).

5.3 Sequencing + Amplification + Growth noise

If the population is evolved through some number, q, of growth-bottleneck cycles before r2 is measured
there is additional “noise" due to the variance introduced both during the bottleneck and during the growth
phase (Figure 16). Since we directly infer the bottleneck size, N

b

, any variance above that expected from
this is due to variations in the cellular growth rates, from which c (half the effective variance in offspring
number per generation) can be estimated. As highlighted earlier, because the population comes out of
stationary phase at the beginning of the cycle, variations in lag time and variations in the division rate
in the next few divisions are likely to dominate the variations. The additional variance measured over q
cycles is 2c(q/N

b

) where q is the number of cycles, N
b

⇡ 6 ⇥ 10

7 is the (known) bottleneck size and 2c a
free parameter that is the variance across the cycle from the bottleneck and growth. The parameter M

pcr

from the previous step is now fixed. Again the distribution remains of the same form as in Eqn. 33 but the
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Figure 16: Model of additional variance introduced by q growth bottleneck cycled on top of the noise introduced
by DNA preps and sequencing.

parameters are updated to include the additional variance:

a1 = R1f b1 = (1/2)

✓
1 + R1

✓
1

M
pcr

+ 2c
q

N
b

◆◆
(38)

a2 = R2f b2 = (1/2)

✓
1 + R1

✓
1

M
pcr

+ 2c
q

N
b

◆◆
(39)

The variance in frequency therefore has an additional contribution of size 2cq/N
b

from the q bottleneck-
growth cycles. Since N

b

is fixed c is a free parameter which we can fit across varying number of cycles q to
see how much additional noise is introduced by growth of the cells (Figure 17).

25 WWW.NATURE.COM/ NATURE | 25



N
um

be
r o

f b
ar

co
de

s

Number of reads

Figure 17: Slices though the joint distribution between samples from t = 0 and t = 16 i.e. (q = 2). The variance
explained by sequencing noise, amplification noise and bottleneck sampling (dashed curve) is not enough to explain
the data. Additional noise due to the variation in offspring number during growth (solid curve) must be included.
The effective single cycle best fit yields a variance of 2c ⇡ 3.5

5.4 The effective offspring distribution though a cycle

The previous section can now be used to estimate the effective offspring distribution for a single cell across
the growth-bottleneck cycle. The total variance in offspring number across the cycle is simply the variance
in frequency multiplied by the bottleneck size N

b

which gives

var(number of offspring across cycle) = 2c ⇡ 3.5 (40)

In the case of Poisson sampling each generation the value of c = 0.5 hence the variations introduced are
substantially more than this, probably due to variations in lag time. We verify inferred value of c is
consistent across multiple growth-bottleneck cycles by plotting it across multiple cycles in Figure 18.

What about higher moments? So far we have classified growth through the cycle using a mean (= 1 for
neutral cells or 1 + s for beneficial cells) and a variance (⇡ 3.5) in the number of offspring from a single
cell at the bottleneck. Our data suggest that the form we propose for the distribution of offspring number
though a cycle — that it falls off exponentially rather than as a Gaussian at large numbers — is sufficient
to capture the probability of large jumps in frequency. We find no evidence of a longer tail in frequency
jumps between time points. While it is possible that the “true” distribution of offspring number is slightly
more skewed than proposed here, across many time points these higher moments are less and less important
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Figure 18: The fitted parameter c (half the effective variance in offspring number per cell per generation) during
growth is consistent when measured across many cycles of increasing lengths. Fitting the value of c for q > 6 cycles
gives values of c ⇠ 7, however this is expected since across this many generations (t > 64) adaptive mutations come
in that contribute anomalously to variance estimates.

(analogous to, although not the same as, the central limit theorem becoming better for more samples) and
the exponential form for the tail appears to be sufficient.
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6 Inference of mean fitness

Once beneficial mutations expand and reach appreciable frequencies they change the mean fitness of the
population. We would like to infer how this mean fitness, x̄(t), increases since it is a measure of how rapidly
the population is adapting and because it determines how rapidly mutations enter later in the evolution.

One method to infer the mean fitness is to monitor how rapidly neutral lineages decline in frequency. If
the mean fitness is x̄(t), the relative change in frequency of a neutral lineage between t � �t/2 ! t + �t/2

is

�f/f = exp

 
�
Z

t+�t/2

t��t/2
x̄(t)dt

!
⇡ exp (�x̄ (t) �t) (41)

Where the last approximation assumes the timescale over which the mean fitness changes is long relative
to �t and so that x̄(t) can be assumed constant. Measuring the rate of decline of neutral lineages therefore
gives one an estimate of the mean fitness. This is of a similar flavor to the methods used to estimate mean
fitness in [14].

Another way to measure mean fitness is to identify a putative set of all adaptive lineages, and use the
fitness estimate for each of these to explicitly calculate the mean fitness using

x̄(t) ⇡
X

j

s
j

f
j

(t) (42)

where j enumerates the set of adaptive lineages. (Note that the estimate of s
j

itself must use information
about the increasing mean fitness as discussed in Section 7).

These two way of estimating the mean fitness should agree with one another, which can be used as a self-
consistency check. Our approach will be to first measure the mean fitness by monitoring how rapidly neutral
barcodes decline in frequency. We will then use this to pick out lineages that are likely adaptive and check
that these give an estimate of the fitness that is self consistent with the fitness we inferred from the neutrals.

6.1 Using low abundance lineages as neutral markers

The vast majority of low frequency lineages (present in ⇠ 20�50 cells at the bottleneck) will not accumulate
a beneficial mutation before ⇠ 1000 generations. If beneficial mutation rates are ⇠ U

b

⇠ 10

�5 and selection
coefficients about s ⇠ 0.05 (both of which broadly agree with our later inferences) then a lineage that
initially has an effective size of n

e

cells will likely accumulate a beneficial mutation after a time t when

n
e

U
b

(s/c)t ⇡ 1 (43)

Giving a typical waiting type for the accumulation of a mutation of

t ⇠ 1

n
e

U
b

(s/c)
⇡ 2000 (44)

generations for a lineage with ⇠ 20 cells at the bottleneck. By ⇠ 150 generations (the time to which we
restrict our analysis) only ⇠ 7% of low frequency lineages will have accumulated a beneficial mutation, hence
they are a good candidate set of neutral lineages. Even if a small fraction do acquire beneficial mutations
that establish, they will not remain at low frequencies for longer than a few times 1/s generations and
hence will not greatly affect results.

To infer the mean fitness from the candidate set of neutral lineages we:

• Form a list of all barcodes that were read exactly r
t

times at time point t. We restrict ourselves to
20  r

t

 40 reads (see below for explanation). Given typical read coverage of ⇠ 3 ⇥ 10

7 per time
point and a bottleneck population size of ⇠ 7 ⇥ 10

7 those barcodes read r ⇡ 20 times correspond to
⇡ 40 cells at the bottleneck.
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• Plot the distribution of these reads at the subsequent time point t + T , where T is the number of
generations to the next sequenced time point. This is usually 8 generations though sometimes 16 or
24 generations elapse between sequenced time points.

• Use the predicted distribution of reads r
t+T

conditioned on r
t

(worked out in Section 5) that includes
the mean reduction in barcode abundance expected due to competition against a mean fitness (e�T x̄)

P (r
t+T

|r
t

) ⇡

vuut(r
t

e�T x̄

)

1/2

4⇡r
3/2
t+T

exp

2

64�

⇣p
r
t+T

�
p

r
t

e�T x̄

⌘2



3

75 (45)

to obtain a best fit value for the mean population fitness, x̄, and the noise parameter  between time
point t and t+T for the given r

t

. Here  parametrizes the total fluctuations and noise across the cycle,
including effects from sequencing, amplification and the growth-bottleneck cycle. It is approximately
equal to 1/2+R/M

pcr

+2cR/N
b

⇡ 3 and is largely independent of the frequency of the barcode. The
best fit is defined as the pair (x̄, ) that minimizes distance, which is defined as the summed square
differences between the predicted distribution and the measured distribution:

distance =

2r
tX

j

(Measured # at r
j

� Predicted # at r
j

)

2 (46)

Where the predicted reads comes from Eqn. 45. For each r
t

and each time point this yields a best-fit
pair (x̄, ).

• Repeat this for 20  r
t

 40. We focus on these read numbers because these lineages are unlikely
to have accumulated beneficial mutations. We avoid using barcodes read < 20 times because for
low integer read numbers the approximate form for the distribution of reads Eqn. 45 does not quite
capture the distribution correctly at very low read numbers (see Section 5).

• Estimate the mean fitness at each time point taking the mean of the estimates over the different r
t

.

x̄
t

=

1

21

(x̄20 + x̄21 + ...x̄40) (47)

We also determine the mean best-fit  at each time point via


t

=

1

21

(20 + 21 + ...40) (48)

• Repeat for each time point to obtain an estimate for x̄ between each subsequent time point. This
method of calculating the mean fitness between two subsequent time points performs well at inferring
the mean fitness of the population when compared to simulations in which the mean fitness is known
(see Section 12).

Figure 19 shows the measured distributions of r
t+T

|r
t

at each time point (rows) for various r
t

(columns).
The solid black curve is the expression from Eqn. 45 with the best fit (, x̄) pair. The dashed black curve
is the predicted distribution Eqn. 45 with x̄ = 0. Initially there is little difference between the solid and
dashed curves meaning that the mean fitness remains x̄ ⇡ 0. However, at times (t > 64) the observed
distribution of reads r

t+T

(yellow bars) is clearly skewed to lower read numbers compared to what would
be expected if there were no change in mean fitness. This skew becomes pronounced at later times where
a non-zero mean fitness is clearly needed to explain the change in frequency of the barcodes.

29 WWW.NATURE.COM/ NATURE | 29



20 21 22 23 24 25 26 27 28 29 30

0

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=4.01206 x=0.00001 r=20

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.85759 x=0.00001 r=21

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=4.31492 x=0.00001 r=22

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=4.1734 x=0.00001 r=23

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.98201 x=0.00001 r=24

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.67777 x=0.00001 r=25

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=4.00916 x=0.0000100037 r=26

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=4.15124 x=0.00001 r=27

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=4.30818 x=0.00001 r=28

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=4.18012 x=0.0000100015 r=29

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=4.02756 x=0.00001 r=30

16

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.09835 x=0.00001 r=20

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.09908 x=0.00001 r=21

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.11147 x=0.00001 r=22

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.08379 x=0.00001 r=23

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.1159 x=0.00001 r=24

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.01883 x=0.00001 r=25

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.06439 x=0.00001 r=26

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.00473 x=0.00001 r=27

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.06037 x=0.00001 r=28

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.05877 x=0.00001 r=29

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.04789 x=0.00001 r=30

32

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.84249 x=0.00001 r=20

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.83711 x=0.00001 r=21

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.85948 x=0.00001 r=22

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.89736 x=0.00001 r=23

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.91447 x=0.00001 r=24

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.93877 x=0.00001 r=25

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.89975 x=0.00001 r=26

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.90031 x=0.00001 r=27

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.8307 x=0.00001 r=28

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.7887 x=0.00001 r=29

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.77108 x=0.00001 r=30

40

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.20055 x=0.00001 r=20

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.1281 x=0.00001 r=21

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.14818 x=0.00001 r=22

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.15906 x=0.00001 r=23

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.25513 x=0.00001 r=24

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.22387 x=0.00001 r=25

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.29962 x=0.000438503 r=26

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.26347 x=0.0000812084 r=27

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.3013 x=0.000614375 r=28

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.33378 x=0.000010003 r=29

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.37137 x=0.000210676 r=30

48

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.29769 x=0.00501969 r=20

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.35478 x=0.00475715 r=21

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.48676 x=0.00356306 r=22

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.43813 x=0.00329936 r=23

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.34677 x=0.00303214 r=24

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.27076 x=0.00365362 r=25

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.32991 x=0.00370102 r=26

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.4002 x=0.00387389 r=27

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.40646 x=0.00419743 r=28

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.37873 x=0.00428138 r=29

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=3.4607 x=0.00435385 r=30

64

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.8167 x=0.00652386 r=20

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.80268 x=0.00597641 r=21

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.76004 x=0.00589839 r=22

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.74715 x=0.0056373 r=23

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.75385 x=0.00519843 r=24

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.77957 x=0.00528476 r=25

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.83769 x=0.00547199 r=26

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.81115 x=0.00643457 r=27

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.7369 x=0.00648274 r=28

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.70834 x=0.00758228 r=29

10 20 30 40 50 60 70 80

1

10

100

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.74256 x=0.0078703 r=30

72

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.69607 x=0.0112132 r=20

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.76295 x=0.0127109 r=21

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.7487 x=0.0123757 r=22

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.75845 x=0.0124172 r=23

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.72108 x=0.0119756 r=24

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.74116 x=0.0129808 r=25

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.73347 x=0.0137518 r=26

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.72769 x=0.0136588 r=27

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.73224 x=0.0133326 r=28

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.73576 x=0.0131753 r=29

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.70042 x=0.0136965 r=30

80

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.63619 x=0.0150269 r=20

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.62575 x=0.0155477 r=21

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.62204 x=0.0161279 r=22

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.59924 x=0.0160684 r=23

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.63975 x=0.0160463 r=24

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.60738 x=0.0162576 r=25

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.6286 x=0.0163479 r=26

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.65037 x=0.0168167 r=27

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.66835 x=0.0158666 r=28

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.63664 x=0.0163589 r=29

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.60415 x=0.0156325 r=30

88

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.48315 x=0.0287161 r=20

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.4595 x=0.0302035 r=21

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.45634 x=0.0297828 r=22

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.44441 x=0.0299325 r=23

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.46669 x=0.0294956 r=24

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.44109 x=0.0297202 r=25

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.49098 x=0.0306081 r=26

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.48176 x=0.0309368 r=27

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.50759 x=0.0309104 r=28

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.50181 x=0.0304634 r=29

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.48433 x=0.0302075 r=30

96

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.50421 x=0.0284208 r=20

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.54443 x=0.0285216 r=21

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.52765 x=0.0278043 r=22

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.4871 x=0.0282468 r=23

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.45515 x=0.0282394 r=24

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.45113 x=0.02905 r=25

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.49357 x=0.0288312 r=26

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.51062 x=0.0297899 r=27

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.5114 x=0.0290585 r=28

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.51714 x=0.0296554 r=29

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.50081 x=0.0294843 r=30

104

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.15971 x=0.0453044 r=20

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.17123 x=0.0462732 r=21

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.14412 x=0.0466265 r=22

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.15535 x=0.0464733 r=23

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.14643 x=0.0469869 r=24

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.13512 x=0.0469759 r=25

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.15264 x=0.0478087 r=26

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads
N
um

be
ro
fb
ar
co
de
s

k=1.14938 x=0.0470863 r=27

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.15786 x=0.0463615 r=28

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.15851 x=0.0460097 r=29

10 20 30 40 50 60 70 80

1

10

100

1000

Number of reads

N
um

be
ro
fb
ar
co
de
s

k=1.16769 x=0.0468286 r=30

Figure 19: Inferring the mean fitness from neutral lineages. All lineages read r
t

times at time point t are identified.
The distribution of reads of these lineages at a subsequent time point r

t+T

is plotted (yellow bars). We fit the
distribution with its expected theoretical form from Eqn. 45 for all 20 < r

t

< 40 (columns of the plot, shown up
to 30) for all neighboring time points (rows of the plot). All data from replicate E1. The solid black curve is the
predicted distribution of reads from Eqn. 45 with the best-fit values values for (, x̄) (shown above each plot). The
dashed curve is the predicted distribution of reads if mean fitness x̄ = 0. At later times the true distribution of
reads is skewed to lower read numbers than predicted by assuming x̄ = 0 because these neutral lineages are being
“squeezed out” by the increasing mean fitness.

6.2 Using a set of adaptive lineages to infer mean fitness

Once a putative set of adaptive lineages has been identified and estimates for the fitness effect of the
mutation within the lineage s

j

, as well as the abundance f
j

of the lineage are available one can explicitly
calculate the mean fitness of population via

x̄ =

X

j

s
j

f
j

(49)

where j enumerates the set of putatively adaptive lineages (outlined in the following section). The inference
of the fitness s

j

for each adaptive lineage itself depends on the mean fitness that we infer using the low-
abundance neutral marker approach described above (as outlined in Section 7). For consistency, and to be
confident that we are capturing the majority of lineages that contribute to the mean fitness, the value of x̄
inferred using the adaptive lineages should agree with the mean fitness inferred by monitoring how rapidly
the neutral barcodes decline in frequency. The comparison between these two ways of inferring the mean
fitness for E1 and E2 are shown in Figure 20a and 20b respectively. Given the good agreement and the
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(a) E1 (b) E2

Figure 20: Plots comparing the mean fitness inferred from the decline of neutral lineages (blue circles) to the mean
fitness inferred from the expansion of beneficial lineages (red line) for both replicates E1 and E2. The consistency
between these two methods confirms that we are successfully identifying the majority of lineages that contribute to
the increasing mean fitness.

uncertainties in each, we estimate that the accuracy of the inferred mean fitness is better than ⇡ 0.001%
at early times (when it has not increased much above s = 2%) and around 0.5% at t ⇡ 100

6.3 Using the local log-gradient of a trajectory and its measured abundance to infer mean fitness

The method described in the previous section used the inferred values of (s, ⌧) for each barcode to estimate
the number of adaptive cells there are in each lineage and thus calculate the mean fitness. There is a more
direct way of doing this that does not rely on inferences from the entire trajectory. The abundance of each
lineage is measured and the fitness of the cells within that lineage can be estimated locally by measuring
the log-gradient of that trajectory (which in the limit of the lineage being dominated by a single expanding
mutation, is a good estimator of its fitness).

The mean fitness measured using this method is clearly not independent from that of the previous
section. However it gives an estimate that is local: relying only on the measured abundance of the time
point in question and its immediate neighbor. To infer the mean fitness using this approach we:

1. Collect the set of putatively adaptive lineages, AL by selecting all those for whom there is evidence
of them being adaptive (ln (maximum posterior of beneficial) � ln (posterior being neutral) > 0 )

2. Initialize the mean fitness to zero: Mean Fitness[i = 0] = 0

3. Estimate the local lineage fitness

Fitness [i + 1] = Mean Fitness [i] +

log(Abundance [i + 1]) � log(Abundance [i])

Time [i + 1] � Time [i]
(50)

4. Update the estimate of the mean fitness using the inferred local fitnesses and an estimate for the
abundance of the beneficial mutants in each lineage:

Mean Fitness [i + 1] =

X

AL
(Abundance [i + 1] � Abundance [i = 0]) ⇥ Fitness [i + 1] (51)

5. Repeat across all transfer time points i.

This locally inferred mean fitness is shown in 21. It broadly agrees with previous inferences though
gives an estimate slightly above the two previous methods for the replicate E1.
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Figure 21: Plots comparing the mean fitness inferred from the decline of neutral lineages (blue circles), the mean
fitness inferred from the expansion of adaptive lineages (red line) from inferred values of (s, ⌧), and the mean fitness
from locally measuring the log-gradient of each expanding adaptive lineage (dashed red line). Replicate E1 shows
a slightly larger mean fitness via this method compared to the previous two methods. E2 agrees well for all three
methods. It is possible that the discrepancy in E1 may account for some of the systematic differences in inferred
fitnesses between replicates E1 and E2 described in Section 8.2. However we also note that at late times, the mean
fitness is driven by a small number of fit mutations that are likely more sensitive to conditions compared to averages
over a very large number of mutations, hence one may expect variability at later times.

6.4 Using the pre-existing mutation class to infer mean fitness

Another method to infer the population mean fitness that is almost entirely independent of the previous
methods, uses the pre-existing lineages (Section 10) with fitness s ⇡ 4%. In flavor this method is similar
to the method of using neutral lineages in that it uses a set of lineages for whom we know the fitness. The
pre-existing lineages likely contain mutations that occured prior to the separation of the two replicates and
was sampled (and subsequently established) in both E1 and E2. We have many such “pre=existing" lineages
with fitnesses between 0.03 < s < 0.05. Here we group these lineages together and track the aggregate
trajectory of all across both E1 and E2.

Because we know these lineages have a mutation that confers a benefit of s ⇡ 0.04 ± 0.005, by tracking
how the aggregate trajectory’s gradient bends to become smaller than s = 0.04, we can estimate the mean
fitness of the population. Concretely, the estimate is

Mean fitness [t] = 0.04 � log-gradient [t] (52)

Figure 22 shows these aggregate trajectories compared to the expected s = 0.04 line. The fact that
they track one another so closely until t = 96 demonstrates that the mean fitness of the population must
be similar across the two replicates (consistent with our other inferences). However there is a dramatic
departure between E1 and E2 for t > 96. This is consistent with the fact that at later times the mean
fitness begins to behave stochastically and one expects there to be differences between the mean fitness of
the replicates from the emergence of rare high fitness mutations.

The mean fitness inferred using this method is shown as the purple line in Figure 23 (a) and (b)

where we have also shown the three previous measures of mean fitness for comparison. We estimated the
magnitude of systematic errors by an upper and lower bounds that includes the mean fitness estimates from
all four methods. These are shown as shaded regions in Figure 23 (c). All four methods agree to within
⇡ 1%.

We note that there is a caveat to using this method to infer the mean fitness which is that we have
ignored the possibility of the accumulation of further beneficial mutations. Further beneficial mutations
in the lineages that make up the aggregate purple lineage would increase its fitness and therefore would
cause a smaller mean fitness estimate (because it would depart less from the 4% line). We see no evidence
for this effect however which in itself could be tentative evidence that not many of these 4% lineages are
acquiring further beneficial mutations in order to keep up with the moving mean fitness.
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Figure 22: The aggregate trajectories of all pre-existing lineages whose fitness was inferred to be in the range
0.03 < s < 0.05 (purple) tracks the expected exponential increase at a rate of s = 0.04 (dashed black line) until mean
fitness begins to change. The deviation of the purple lines from the dashed black line gives an estimate of the mean
fitness. Note the dramatic differences between the replicates at late times (t > 96): consistent with the mean fitness
becoming stochastic at late times.
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(c) Comparing the mean fitnesses between E1 and E2 with estimates for systematic errors.

Figure 23: (a) and (b): plots comparing the mean fitness inferred from the deviation of the pre-existing class of
s = 0.04 mutations from their exponential growth rate (purple lines). For comparison we show the mean fitness
inferred from the decline of neutral lineages (blue circles), the mean fitness inferred from the expansion of adaptive
lineages (red line) from inferred values of (s, ⌧) and the mean fitness from locally measuring the log-gradient of each
expanding adaptive lineage (dashed red line). (c) Estimating the systematic errors on the mean fitness by fitting a
region that encompasses the mean fitness trajectories from the 4 different methods (blue for E1 and yellow for E2),
and, bottom, comparing these regions to one another.
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6.5 Simulating the mean fitness from the inferred µ(s)

To check that our inferred mean fitness and inferred µ(s) are consistent with one another, we performed
simulations of the dynamics of the mean fitness using the inferred µ(s) distribution (see Figure 3B and 3E).
We simulated these dynamics as follows:

1. We formed a set of putatively pre-existing lineages by selecting all lineage that were identified as
adaptive in E1 and E2 and that had anomalously early establishment times (⌧ < �1/s).

2. We simulated the contribution of these pre-exising lineages to the mean fitness accounting for errors
in the establishment time inferences of order 1/s (we drew the establishment times for these pre-
existing mutations from a normal distribution whose mean was the measured establishment time,
with a standard deviation of 1/s). These pre-existing mutations were assigned their measured fitness
and then assumed to increase in frequency deterministically in the presence of a changing mean fitness
(see below).

3. We then simulated the contribution of de novo mutations to the mean fitness by drawing mutations
from the distribution of mutation rates across fitness effects that we inferred from E1 and E2:

f(s)�s =

exp

⇣
s(t � ⌧) �

R
t

⌧

x̄(t)dt
⌘

s
(53)

where ⌧ is a random variate from the distribution

⇢(⌧)d⌧ =

sd⌧

�(Nµ(s)�s)
exp

�
�sNµ(s)�s⌧ � e�s⌧

�
. (54)

4. The mean fitness x̄, is calculated at each generation and updated iteratively, having been initialized
at x̄(t = 0) = 0.

The mean fitness trajectories predicted by these simulations are shown in Figure 24 as the gray trajec-
tories. For comparison in red we show the mean fitness trajectory that results from the measured values
of (s, ⌧) from the data in both E1 (lower of the two lines) and E2 (higher of the two lines). These are the
same mean fitness trajectories as the solid lines in Figures 2A and 2C insets).

0 20 40 60 80 100 120
0.00

0.02

0.04

0.06

0.08

0.10

���� (�����������)

�
��
�
��
��
��
�

Figure 24: Simulated mean fitness trajectories (gray lines) compared to the measured mean fitness from each
replicate (red lines) from 1000 simulations. Simulated trajectories were calculated using the inferred µ(s) from
each replicate. We observe that both the measured E1 and E2 are similar to the simulated trajectories, which are
themselves very similar to one another at early times, but show both stochastic differences (width of the gray clouds)
and systematic differences (small separation between the gray clouds) at late times.
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7 Inference of s and ⌧ and their errors

For a given lineage trajectory (read number measurements over time) there are only two reasonable hy-
potheses, (called N and A) that could explain the data:

N no adaptive mutation established in the lineage

A an adaptive mutation with fitness effect s occurred in the lineage and established to grow exponentially
with an establishment time ⌧

(it is likely deleterious mutations do enter lineages, however since the deleterious mutation rate must be less
than the bulk mutation rate, U

d

< U ⇠ 0.01, only a small fraction of cells would accumulate deleterious
mutations and these are selected against over a timescale of 1/s

d

, where s
d

is the deleterious effect size,
making such lineages indistinguishable from the null hypothesis N ). We want to compare the probabilities
of these two hypotheses given the evidence contained in the read trajectory (data) i.e. P (N|data) vs
P (A|data). To calculate the probability of each hypothesis given the data we will first calculate the
likelihood of the trajectory given the hypothesis and then invert this using Bayes’ theorem using prior
probabilities for the two hypotheses.

7.1 Likelihood of neutral hypothesis, N

When no mutation occurs, the expected change in reads between time points is determined entirely by
competition against the increasing mean fitness x̄. As outlined in Section 5 the expression for the probability
of observing r

t+T

reads at time t + T conditioned on observing r
t

and time t, P (r
t+T

|r
t

, no mutation), is
well approximated by

P (r
t+T

|r
t

, no mutation) ⇡

vuut(r
t

e�T x̄

t

)

1/2

4⇡
t

r
3/2
t+T

exp

2

64�

⇣p
r
t+T

�
p

r
t

e�T x̄

t

⌘2


t

3

75 (55)

where 
t

and x̄
t

are the best fit values of the noise parameter and mean fitness between time point t and
the subsequent time point t + T as discussed in Section 6.1.
The inclusion of information from the first time point is slightly more subtle since for this time point we
do not have a previous time point on which to condition. We do however have an accurate estimate of
the frequency of the lineage at the zeroth time point f0 as discussed in Section 5. We include this in the
following way:

P (r
t=0|f0, no mutation) ⇡

vuut (R0f)

1/2

4⇡0r
3/2
t+T

exp

"
�
�p

r
t+T

�
p

R0f
�2

0

#
(56)

where 0 is set to 2 (typical of the other time points) and x̄0 = 0.
The full likelihood of the trajectory given the no-mutation hypothesis H1 is then

log (Likelihood(trajectory|no mutation)) = log P (r
t=0|f0, s, ⌧) +

X

t

log P (r
t+T

|r
t

& no mutation) (57)

7.2 Likelihood of s, ⌧ hypothesis, A

If a mutation of fitness effect s and establishment time ⌧ occurs, the growth of the number of beneficial-
mutant cells is of the form

n(t) =

c

s � x̄(⌧)

exp

✓Z
t

⌧

(s � x̄(t0))dt0
◆

(58)
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If the number of reads observed at the previous time point was r
t

, and the read depth at this time point
was R

t

then approximately (n(t)/N
e

)R
t

of the reads came from cells with a beneficial mutation and these
will increase by a factor e(s�x̄)T at the next time point. The remanding, r

t

� (n(t)/N
e

)R
t

, are derived from
neutral cells and hence decrease by a factor of e�x̄T at the next time point. Thus, the mean number of
reads expected at the following time point is approximately:

hr
t+T

i ⇡ (n(t)/N
e

)R
t

e(s�x̄)T
+ r

t

� (n(t)/N
e

)R
t

(59)

(note that if (n(t)/N
e

)R
t

> r
t

, we set (n(t)/N
e

)R
t

= r
t

so that the entire lineage is predicted to contain
beneficial cells). Therefore the probability of the data given the hypothesis is obtained from

P (r
t+T

|r
t

, s, ⌧) ⇡

vuut hr
t+T

i1/2

4⇡
t

r
3/2
t+T

exp

2

64�

⇣p
r
t+T

�
p

hr
t+T

i
⌘2


t

3

75 (60)

where hr
t+T

i is the expression in Eqn. 59. As in the case of the no mutation hypothesis we include the
initial zeroth time point via

P (r
t=0|f0, s, ⌧) ⇡

vuut (R0f)

1/2

4⇡0r
3/2
t+T

exp

"
�
�p

r
t+T

�
p

R0f
�2

0

#
(61)

The full likelihood of the data given the (s, ⌧) hypothesis is then

ln (Likelihood(trajectory|s, ⌧)) = ln P (r
t=0|f0, s, ⌧) +

X

t

ln P (r
t+T

|r
t

, s, ⌧) (62)

7.3 Prior for the neutral hypothesis, N

The prior probability for the no-mutation hypothesis depends on U
b

and how long the trajectory exists for.
The analysis considered here lasts up to t ⇠ 100 generations by which time the probability of a lineage
containing a beneficial mutation of any observable effect size is roughly

n0U
b

s

c
t (63)

putting in s ⇠ 0.05, a typical’ effect size, 2c ⇡ 3.5 (see Section 5.4), U
b

(s > 2%) ⇠ 10

�5, n0 ⇠ 10

3 and
t ⇠ 10

2 we see that even by the end of the observation time the probability of a lineage having accumulated
a beneficial mutation remains on the order of a few percent, and hence the prior probability of no mutation
is close to unity i.e.

Prior(no mutation) ⇡ 1 (64)

7.4 Prior for the (s, ⌧) hypothesis, A

The prior probability of a mutation occurring in the interval ds around s is largely unknown since it is the
very distribution we are attempting to infer from the data. However, previous attempts to determine this
distribution have yielded some prior knowledge which informs our prior:

• There are generally fewer mutations of larger effect, hence µ(s) should be a decreasing function. [15]

• Total beneficial mutation rates, U
b

in yeast are in the range U
b

2
⇥
10

�6 � 10

�4
⇤

[16,17]

• Selection coefficients in yeast evolution experiments are typically in the percent range [16]
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Given these considerations we elected to use a prior in s of the form

µ(s)ds = U
b

ds

s̄
exp (�s/s̄) (65)

where
Z 1

0
µ(s)ds = U

b

= 10

�5 (66)

with s̄ = 0.1. This prior is intentionally broad, reflecting our lack of knowledge about the range of fitness
effects we expect to see in the system. However the exact form of the prior at large fitness is not very
important as inferences for mutations with such large fitness effects are highly constrained by the data.

This prior distribution over s can — in principle — be used to determine the prior probability of the
mutation establishing in the interval d⌧ around ⌧ . That is, µ(s) sets ⇢(⌧). However to do this assumes that
the process of establishment of single beneficial mutations results from a constant feeding process from the
pool of ⇠ n0 neutral cells as outlined in Sections 7. We chose not to use the distribution of establishment
times as outlined in Eqn. 7 as a prior on ⌧ because it does not account for the possibility of mutations
arising in the period of common growth prior to the beginning of the growth-bottleneck cycles that were
discussed in Section 10. Since we have less concrete information about the environment, mutation rates
and effect sizes of mutations in this period of prior growth, this lack of information should be reflected in
our prior. We therefore chose a uniform prior over ⌧ of the form

⇢(⌧)d⌧ =

d⌧

�⌧
for � 150 < ⌧ < 100 (67)

where �⌧ = 250. We intentionally included the possibility of very negative establishment times because, as
discussed in Section 10 we expect a large number of pre-existing mutations to have substantially negative
establishment times.

7.5 Bayesian Posterior

For each trajectory we calculate the ratio of the the posterior probabilities for H1 and H2:

r(s, ⌧) =

P (H2|data)
P (H1|data)

=

Prior(s, ⌧) ⇥ Likelihood(s, ⌧)ds d⌧

Prior(no mutation) ⇥ Likelihood(no mutation)

(68)

over ranges

0 s  0.4 (69)
�150 ⌧  100 (70)

using bin widths of �s = 0.005 and �⌧ = 1.
If, for any range of (s, ⌧) this ratio the hypothesis of the particular (s, ⌧) in invertval (�s, �⌧) is more

likely than the neutral hypothesis (r > 1) we classify the lineage as adaptive. If the lineage is classified
as adaptive, the position in (s⇤, ⌧⇤

) space at which r is maximized is used as our best estimate for fitness
effect and establishment time of the mutation.

Figure 25 plots some of these posterior probabilities. Each row of the plot is a particular barcode.
The columns are labelled in the figure. Note here the labels 2M3 = E1 and 4M3 = E2. The plots of the
posterior probabilities for the barcode in both replicates E1 and E2 are shown in the final two columns.
The plots of the data are in the 11th column and show the trajectory data from replicate E1 (black points)
and E2 (white points) compared to the the predicted trajectory of the most probable hypothesis (s⇤, ⌧⇤

)

(solid black for E1, dashed black line for E2) and the predicted trajectory of the the no-mutation hypothesis
(solid gray line E1, dashed gray line E2 ).
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Despite having to chose a prior for the purposes of the inference, our results are largely insensitive to the
exact form of the prior we use: for most adaptive lineages the data (contained in the likelihood) constrains
the range of possible (s, ⌧) to a very narrow region. Mutations for whom evidence is weak (i.e. their
posterior probability ratio r is close to unity) are inevitably affected by the prior expectation. However,
these are mostly lineages whose size does not increase much and hence have little effect on the population
dynamics or our quantitative results.

One could use the inferred µ(s) (see Section 11) as a prior and repeat the process of inference to check
for self consistency, iterating a number of times if needed. However because the prior does not grossly affect
most of our inferences the gains from performing this iteration are marginal. Another consideration is that
as our inferences become more confident the uncertainties in s, ⌧ are more strongly affected by systematic
differences in mean fitness and in the inherent uncertainties between the establishment time ⌧ = ⌧

est

and
the true mutation occurrence time ⌧

mut

than they are by uncertainties caused by the prior.
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7.6 Visualizing barcode trajectories by fitness

Fi
tn
es
s

E1

E2

Figure 26: Sampled trajectories from both replicates colored according to the inferred fitness of the mutation in
each barcode.
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Figure 27: Plot of the mean errors in s (left plot) and ⌧ (right plot) binned by different (s, ⌧) with bin widths of
s = 0.01 and ⌧ = 20). The error are depicted by the size of the black circles (scale above each plot). The errors
depend on when the mutation arose and how large its fitness effect is, however errors in s are typically ⇠ 0.5 � 1%

while errors in ⌧ are typically 5 � 15 generations

7.7 Errors in s and ⌧

Errors on the best estimate (maximum posterior) fitness effect and establishment time (�
s

, �
⌧

) follow
straightforwardly from r(s, ⌧). Intuitively the errors in both are related to how rapidly the posterior
probability decays away from (s⇤, ⌧⇤

) and thus to the breadth and thickness of the peak. We calculate
these errors as follows

• We calculate the curvature matrix around the maximum probability

K =

✓
@2
s

ln r @
⌧

@
s

ln r
@
s

@
⌧

ln r @2
⌧

ln r

◆����
(s⇤,⌧⇤)

(71)

• Find the two eigenvectors (v1,v2) and corresponding eigenvalues �1, �2 of this matrix. The eigenvec-
tors are the directions of principle curvature and their eigenvalues the respective principle curvatures
in those directions. Moving along the direction v1 away from the maximum posterior probability at
(s⇤, ⌧⇤

), the posterior probability decays like a Gaussian with standard deviation 1/
p

�1 and similarly
for v2 with corresponding standard deviation 1/

p
�2.

• The magnitude of (v1 · ŝ)/
p

�1 and (v2 · ŝ)/
p

�2 (where ŝ is the unit vector (1, 0)) give the errors in
fitness effect, �s along the two principle directions. We define the error in fitness as the maximum of
these two values. Similarly (v1 · ⌧̂)/

p
�1 and (v2 · ⌧̂)/

p
�2 give the errors in establishment time �⌧

along the two principle directions, the maximum of which is taken as the error.

The errors in s and ⌧ depend on the specific trajectory in question, and, more generally on (s, ⌧). Figure
27 shows how the errors �

s

and �
⌧

depend on (s, ⌧). We note that the typical errors in the inference of
⌧ ⇡ 15 generations are smaller than the inherent uncertainties between the establishment time ⌧ = ⌧

est

and
the true mutation occurrence time ⌧

mut

that can differ by a few multiples of ⇠ ±1/s (see Figure 7)

8 Systematic Errors

In addition to errors associated with the width of the posterior distribution, there are also factors that
likely contribute systematic errors to estimates of (s, ⌧). Here we discuss the various factors that contribute
to systematic errors and estimate their magnitudes.
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(a) Times up to 88 (b) Times up to 72 (c) Times up to 64

Figure 28: Scatter plots of the fitnesses of 33 clones that were picked at generation t = 88 from replicate E2 and
fitness assayed in a fluorescence competition experiment as described in Section 2. The inferred fitnesses agree very
well for clone with low fitness, however there is a systematic bias for clones at high fitness. (a) shows plots inferred
values from sequencing up to t  88. The systematic bias is not reduced if the analysis is restricted to earlier times,
e.g. t  72 in (b) or t  72 in (c). This suggests that the bias cannot be fully explained by systematic errors in
mean fitness inferences at late times.

Mean Fitness errors. The fitnesses quoted in this work are relative to the fitness of the ancestral strain.
As discussed in Section 7, this requires accurately accounting for the mean fitness of the population. Mean
fitness measurements naturally have errors associated with them and, as can be seen from Figure 23, these
errors are ⇡ 1% at times t > 64 and < 1% for t < 64.

Uncertainty in the inferred mean fitness at later times is expected for a number of reasons: (i) there are
fewer neutral lineages making it more challenging to track the decline of them (see Section 6.1). At later
times these neutral lineages are also more likely to contain beneficial mutations and therefore to potentially
underestimate the true mean fitness. (ii) The diversity of barcodes is reduced at later times and expanding
beneficial lineages become large enough to potentially contain multiple beneficial mutations. This worsening
frequency resolution at late times makes it more difficult to accurately capture the fitness of each expanding
lineage. Unfortunately, these late times are also when many of the beneficial mutant lineages become large
enough to enable accurate inferences of s: thus for these, the errors from the uncertainties in the mean
fitness will be largest.

To quantify how these systematic errors in mean fitness may affect our fitness estimates, we consider
two approaches. First, we compare the fitness inferred via barcode sequencing to the fitnesses inferred
from a fluorescence based competition assay (see Section 2 for details on how the fluorescence assay was
performed). Second, we use “pre-existing” lineages — lineages likely containing beneficial mutations that
arose prior to the separation of the two replicates that subsequently established in both replicates— as
useful checks on our inferences since we know it is likely that in most cases these lineages contain mutations
of the same identity, and hence of the same fitness.

8.1 Comparison with fluorescence assay fitness.

Figure 28 shows scatter plots of the fitnesses of 33 clones (from replicate E2 only) as measured via the
fluorescence based assay (x-axis) and the barcode sequencing inferences (y-axis) using data up to 88 gen-
erations (a) up to 72 generations (b), and, up to 64 generations (c). While there is very good agreement
for the clones whose fitnesses are in the 0.03 < s < 0.05 range, the higher fitness clones have a small sys-
tematic bias with fitnesses from barcode sequencing being systematically higher than the fitness measured
via fluorescence. One potential explanation for this bias is that at later times, a small systematic error in
the inferred mean fitness of the population could cause a systematic shift of fitnesses inferred from barcode
sequencing. However, restricting the analysis to earlier times —when systematic errors in mean fitness are
< 1% — does not significantly affect the observed bias. (It does however make the inferences more noisy,
because they are based on less data).

43 WWW.NATURE.COM/ NATURE | 43



0 20 40 60 80 100 120
0.00

0.02

0.04

0.06

0.08

���� (�����������)

�
��
�
��
��
��
�

A

B

C

E2

Figure 29: Using three different mean fitness trajectories, that approximate the magnitude of systematic errors (see
Section 6.4), we re-inferred the fitnesses of the 33 clones that were fluorescently assayed from replicate E2. Here the
analysis is again restricted to t  88. Error bars on each fitness measurement is shown via black lines behind each
of the points. While there can be some systematic effect of the mean fitness on the observed bias it seems unlikely
that the bias in the fitter clones is fully explained away via errors in mean fitness.

To look further into the role of the mean fitness on our inferences we used an upper and lower bound
for the mean fitness from replicate E2 by estimating the magnitude of systematic errors in the mean fitness
(Figure 29, yellow region, see 6.4) and re-inferred the fitnesses of the 33 assayed clones for high (A) medium
(B) and low (C) mean fitness estimates. While a lower mean fitness does reduce the bias for the higher
fitness clones, it lowers the estimates for the low fitness clones by too much. Given that errors in the mean
fitness for early times t < 88 are small (<1%) it seems implausible that errors in the mean fitness can fully
explain the observed bias.

To further check this, we examined plots of the measured barcode abundance data (Figures 30-33 data
points) for each of the 33 picked clones compared to the predicted trajectories based on our inferences
(Figures 30-33 solid yellow line, the yellow dashed line is the neutral trajectory). As a guide, we also plot
the gradient of the trajectory that would be expected from the fitness from the fluorescent assay (Figures
30-33 black dashed line). In all cases the predicted trajectories track the measured ones very closely. In the
majority of cases the fitness measured from the fluorescent assay also has the correct gradient. However
there are clear cases where the fitness measured from the fluorescent assay could not possibly explain the
observed trajectory. Barcodes #8825 and #29375 are clearly beneficial (and substantially so) from the
sequencing trajectories but were measured to be neutral via the fluorescent assay. These discrepancies are
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very likely due to the fact that the picked clones was one of the remaining neural cells in the expanding
lineage. Indeed, given that the expanding mutations in most lineages are only ⇠ 10 fold more frequent than
the remaining neutral cells, we should expect some of these from a sample of 33 clones.

Other discrepancies between barcode-sequencing fitness and the fluorescent fitness however are more
of a mystery. Barcode #14280 is an example where there is a clear discrepancy between the two fitnesses
that could not be explained by small systematic differences in mean fitness (barcodes #25531 and #63215
are less extreme examples). These could potentially be multiple mutants causing the lineage to expand by
more than can be explained by the first mutation or signs of ecological effects coming in.

From these considerations we conclude that while a small systematic error in mean fitness could account
for part of the observed bias, it cannot account for all of it. The emergence of multiple mutants in some
of the lineages could explain some of the discrepancies, it is unlikely they are the whole story because the
bias exists at early times, when multiple mutants are expected to be very rare. Another possibility is that
there could be genuine differences in the growth rate of the same mutation in the different assays. This is
plausible given that we know the growth rates in the fluorescent assay are very sensitive to small differences
in conditions. There are indeed non-trivial differences in conditions between the two assays: for example
there are large differences in frequencies at which each of the clones is present (in the fluorescence-based
assay the clone is present at ⇠ 10% while in the sequencing assay even the high fitness are typically at the
0.01% scale) and differences in the presence /absence of other expanding beneficial mutant subpopulations.
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Figure 30: Fluorescence and barcode sequencing fitness for the 33 picked clones (each highlighted). Yellow data
points show the measured abundance in E2, the yellow line is our inferred trajectory, the dashed yellow line the
expected neutral trajectory. The black dashed line is the gradient that would be predicted by the fluorescent fitness.
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Figure 31: Fluorescence and barcode sequencing fitness for the 33 picked clones (each highlighted). Yellow data
points show the measured abundance in E2, the yellow line is our inferred trajectory, the dashed yellow line the
expected neutral trajectory. The black dashed line is the gradient that would be predicted by the fluorescent fitness.
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Figure 32: Fluorescence and barcode sequencing fitness for the 33 picked clones (each highlighted). Yellow data
points show the measured abundance in E2, the yellow line is our inferred trajectory, the dashed yellow line the
expected neutral trajectory. The black dashed line is the gradient that would be predicted by the fluorescent fitness.
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Figure 33: Fluorescence and barcode sequencing fitness for the 33 picked clones (each highlighted). Yellow data
points show the measured abundance in E2, the yellow line is our inferred trajectory, the dashed yellow line the
expected neutral trajectory. The black dashed line is the gradient that would be predicted by the fluorescent fitness.

49 WWW.NATURE.COM/ NATURE | 49



8.2 Using Pre-existing mutations to verify fitness and establishment times

Pre-existing mutations (see Section 10) that arose prior to the splitting of the two replicates offer a very
useful check on systematic errors. Since they contain the same beneficial mutation, these pre-existing
lineages should have the same inferred fitness, and a similar (though not necessarily the same) inferred
establishment time. To check this we plotted the fitnesses (Figure 34A) and establishment times (Figure
34B) of all lineages that were identified as adaptive across both replicates. As expected most fitness
measurements and establishment times broadly agree. For mutations in this 0.03 < s < 0.05 range the
systematic differences between E1 and E2 are very small (< 0.005 absolute fitness difference).

However, as we saw in the previous discussion on fitnesses measured by a fluorescence assay, the majority
of the bias appears to come from high-fitness clones. Therefore we also consider the rarer lineages that
acquire large effect mutations in the range 0.06 < s < 0.15, that are also likely pre-existing. To isolate a
set of putatively pre-existing large-fitness-effect lineage we selected all lineages that:

• Are identified as adaptive in both E1 and E2

• Have fitness effects s > 0.05

• Have negative establishment times ⌧ < 0

A scatter plot of the fitnesses of these lineages inferred from E1 and E2 (Figure 35) shows a good
correlation at late times (t = 88), though with a slight systematic offset (red line versus grey line) of
magnitude �s ⇡ 0.008. There is little evidence for this systematic offset at early times (see panels with
t = 48 and t = 64). This suggests therefore that the systematic offset is not likely to be an artifact. Rather
it suggests that larger fitness effect mutations do have a slightly larger fitness advantage over neutral cells in
the replicate E2 compared to E1. One possible explanation for this is ecological effects could be becoming
significant at this time. This is plausible given that around this time (t ⇠ 96) mutant cells becomes
the majority type of cell in the population. Another possibility is there is a very slight difference in the
experimental conditions: from the fluorescent assay fitness measurements, we know that subtle differences
— which we had to be very careful to avoid — can lead to far larger changes in fitnesses.
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Figure 34: (A) The inferred fitnesses for all lineages that were identified as adaptive across both replicates E1 and
E2. There is a very small systematic error for low fitness clones (s ⇡ 4%) of less than 0.5%. Higher fitness clones
seem to show larger deviations. (B) The inferred establishment times for all lineages that were identified as adaptive
across both replicates E1 and E2. Note that the correlations is expected to be worse for establishment times given
the inherent stochasticity during growth being independent in each replicate.
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Figure 35: Scatter plots of the inferred fitnesses in replicates E1 and E2 for all lineages that contain putatively
high fitness pre-existing mutations (s > 0.05, ⌧ < 0, and identified as adaptive across both replicates). Each panel
shows the correlation in fitness that would result if only data up to the denoted time point were used. The color
indicates the probability that the barcode is adaptive by that time (averaged across both replicates). The gray line
is x = y, while the red line is y = x + ✏ with ✏ the least square fit to the data to determine if there is evidence for a
systematic offset. At early times (t = 48 and t = 64), while the correlation is worse (as would be expected), there is
no evidence of a systematic difference in fitness between the two replicates. At later times however (t > 88) there is
some evidence that large fitness-effect mutations have a larger advantage in E2 compared to E1. This is corroborated
in the correlation plot in Figure 2D of the main paper.

9 Detectability limits and small effect mutations

Consider a mutation with fitness effect s that enters the population at time t
m

and — in the absence of any
mean fitness increase — is destined to grow exponentially. The probability of this mutation establishing in
the population and being detected as beneficial depends on how long it takes for the mutation to establish
and how quickly the mean population fitness increases. If, by the time the mutation establishes in the
population, the mean fitness has increased to above s, then the mutation begins to be outcompeted before
it has been able to grow exponentially. As we outline in Section 9.1 this prohibits weak effect mutations
from ever having much of an impact on the population dynamics and in effect places a lower bound on the
fitness effects that can be detected in an adapting population. This limit emerges from the changing mean
fitness rather than from detectability limits of the lineage tracking method.

In addition to limits on detectability of small fitness effects imposed by the adapting population, there
is also a limit that emerges because of initial lineage sizes of n0 cells. Since we measure the abundance of
the entire lineage, not that of the individual mutation, a beneficial mutation must reach of size of ⇠ n0

cells before its effect can be easily detected. This limit is discussed in Section 9.2.

9.1 Limits on s imposed by clonal interference

A mutation that occurs at time t = ⌧
mut

, that is destined to establish, and that competes against a mean
fitness of x̄ = 0 grows as

n(t) =

c⌫

s

⇣
es(t�⌧

mut

) � 1

⌘
with ⌫ ⇠ 1 (72)

Where ⌫ is a random variate from an exponential distribution (see Section 2), s the fitness effect and c the
half the variance in offspring number. Soon after occurring, for t � ⌧

mut

< 1/s, the average growth of a
mutation that has not gone extinct is roughly linear in time

hn(t)i ⇠ c(t � ⌧
mut

) (73)

and so the time taken to reach the establishment size of ⇠ c/s is approximately ⇠ 1/s generations, with
variations around this of the same order, with a tail to late establishments. For weak effect mutations this
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delay in reaching establishment size can thus be substantial and long enough for the mean population
fitness to increase appreciably.

The mean fitness plots from experiment E1 and E2 in Figures 20a and 20b show that in both experiments
it takes ⇠ 80�100 generations for the mean fitness to increase by a few percent. Therefore, even if a mutation
with fitness effect s = 0.01 occurs immediately (⌧

mut

= 0), it is unlikely to establish in the population before
being outcompeted by the increasing mean fitness and therefore such mutations are unlikely to ever truly
establish. More generally, for a mutation of effect size s to establish it would have to occur at least ⇠ 1/s
generations before the mean fitness x̄ surpasses s. In terms of its occurrence time ⌧

mut

this means

⌧
mut

< t(x̄ = s) � 1/s. (74)

This sets a time limit on detectability that arises from the inherent clonal interference. To establish in the
populate a mutation must occur early enough so that it has time to grow exponentially before the mean
fitness outcompetes it. This can also be cast in terms of a limit on fitness effect, s given an occurrence time

s & 1

t(x̄ = s) � ⌧
mut

(75)

where t(x̄ = s) is the time at which the mean fitness x̄ = s.

9.2 Limits on s imposed by the initial lineage size

The limit on the detectability of mutations in the previous section 9.1 assumes that in order to be detected
a mutation only has to establish i.e. reach a size of n & 1/s. However in the lineage tracking experiment,
lineages also contain n

e

⇠ 1000 neutral cells and what is measured — in terms of read counts — is the
total size of the lineage. The effect of the beneficial cells will be clear within this lineage only when they
comprise an appreciable fraction of the entire lineage i.e when n(t) ⇠ n

e

. Therefore, instead of a waiting
time of 1/s generations for the mutation to establish, detecting a mutation above the neutral cells takes a
time of (1/s) ln(n

e

s) generations. In terms of the occurrence time ⌧
nut

of the mutation this places a limit

⌧
mut

< t(x̄ = s) � (1/s) ln(n
e

s) (76)

or in terms of the effect size

s & 1

t � ⌧
mut

ln

⇣n
e

s

c

⌘
(77)

in order to be detected as beneficial. Mutations must therefore occur earlier, by a factor of ⇠ ln(n
e

s) than
they do to simply establish. We note again that it is the effective lineage size n

e

and not the bottleneck
population size n

b

that is relevant here because it was n
e

that was used to infer ⌧
est

from data. Equivalently,
we could have replaced c by c/T and used the bottleneck size, n

b

= n
e

/T : as the times for establishment
are typically multiple growth-dilution cycles, these are averaged over as accounted for either way.

To verify that the increase in mean fitness and finite lineage size does impose a fundamental lower limit
on the detectability of small fitness effect mutations, we simulated an evolving population with parameters
very similar to those in the experiment, namely a bottleneck population size of N

b

= 7 ⇥ 10

7, L = 500, 000

barcoded lineages, and a distribution of mutations rates to different fitness effects which is uniform (see
Section 12 for details). We do indeed observe (Figure 36) that for a given effect size s, there is a time
limit before which mutations must occur in order to be detected. The limit imposed by clonal interference
alone (large dashes) is the limit of what could possibly be detected even if every cell were tracked. The
additional limit imposed by the finite initial lineage size is shown by the small dash line in Figure 36 which
does indeed trace the line of mutations that are identified as adaptive in simulated data (for details of this
data see Section 12).
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Figure 36: A plot of the fitness effect, s (y-axis) and establishment time, ⌧ (x-axis) of all ⇠ 8, 000 mutations detected
in the simulated data set (described in detail in Section 12). Each data point is a beneficial mutation that arose
during the simulation. The size (area) of the data point is proportional to the number of cells in which that beneficial
mutation exists. Red points refer to mutations that are identified as adaptive in both replicate simulations and likely
“pre-existing” while blue are mutations that were identified as adaptive in only one replicate (see Section 10). The
solid line is that of the mean fitness increase defined by t(x̄ = s). Only mutations occurring with t

m

< t(x̄ = s)�1/s
(larger dash line) can ever establish in the population. Only mutations occurring t

m

< t(x̄ = s) � (1/s) ln(n0s) can
both establish and be detected. The difference between the two dashed lines accounts for the additional time the
mutation take to reach a size of ⇠ n0 cells to be detected. Mutations that occur in the region between the two
dashed lines can establish but remain undetected. Such mutations however never reach large sizes.
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What does this imply for the experimental data? Putting in approximate numbers of t ⇠ 100 gen-
erations, c ⇠ 3.5, n0 ⇠ 10

3, even if the mutation occurs immediately t
m

= 0 it will only be detected
if

s & 1

100

⇥ ln

✓
1000 ⇥ 0.04

3.5

◆
⇡ 0.026 (78)

This agrees with the (s, ⌧) plots shown in the paper from E1 and E2 where mutations with s < 3% are
rare.

It should be remembered that the limits (dashed lines in Figure 36) calculated here are approximate. In
reality the time limit imposed on a detecting a mutation depends on the particular initial lineage size (not
the median), on how the neutral cells fluctuate and during the expansion of the beneficial mutation, and on
specific time it took for the beneficial mutation within the lineage to fluctuate up to high enough numbers
to be detected (which can deviate from (1/s) ln(n

e

s) by factors of ±1/s). These limits should therefore be
interpreted not as strict boundaries but rather as lines that delineate a region where it becomes increasingly
unlikely to detect a mutation.

9.3 Mutations with small fitness effects

Given the detectability limits imposed both by the evolutionary dynamics and by the initial size of lineages
described above, what can we say about mutations of very small fitness effects? Are there mutations of
small effect that remain undetected? Is the decline of mutation rates below the peak at s = 4% due to
detectability issues, or because the rate is smaller to these weak mutations?

While it is hard to conclusively measure the rate of mutation to very small fitness effects, there are two
important points relating to small fitness effect mutations. First, small fitness effects are inconsequential
to adaptation unless they occur at implausibly high mutation rates. Second, although the precise shape of
the distribution at s < 4% is difficult to measure, there is some tentative evidence suggesting that the peak
observed in the inferred spectrum of mutation rates as a function of fitness effect really is a peak, and not
just an artifact of detectability.

1. Mutations of small fitness effect are inconsequential to the evolutionary dynamics we observe.

To impact the evolutionary dynamics of large populations, low fitness effect mutations have to occur
at a very high rate. Using the deterministic approximation described in 11.1 the predominant s that
drives the dynamics at time t is the s that maximizes

µ(s)est (79)

Given that the total rate to fitness effects in the s ⇠ 4% range is on the order of U ⇡ 5 ⇥ 10

�5, what
would the mutation rate to fitness effect s < 2% have to be, in order to drive the dynamics and be the
“predominant” fitness class? This depends on what time we are interested in. A reasonable choice is
the time when the mutants as a whole become an appreciable fraction of the population (they reach
⇠ 10% at t ⇡ 70 generations) which more properly corresponds to t ⇡ 120 generations of growth since
there are 48 generations of growth before the separation of the replicates. From above, in order to
have a similar impact as the s = 4% mutations, those with s = 2% or s = 1% would therefore have
to occur at a rates of

U(2%) ⇡ U(4%) exp (100 ⇥ (0.04 � 0.02)) ⇡ 5 ⇥ 10

�4 (80)
U(1%) ⇡ U(4%) exp (100 ⇥ (0.04 � 0.01)) ⇡ 2 ⇥ 10

�3 (81)

Given the per base pair mutation rate of 3 ⇥ 10

�10, these rates would require an implausibly large
target size in excess of ⇠ 10 � 50% of the genome. Therefore it seems unlikely that mutations with
small fitness effects can play a substantial role in the dynamics.
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Figure 37: The mutation rate fitness spectrum that is inferred at varying adaptive thresholds. The number next
to the colored lines is the threshold: any lineage whose posterior probability of the neutral hypothesis divided by the
posterior probability of the beneficial hypothesis is smaller than the quoted threshold is identified as adaptive. For
example the line with threshold of e�6 includes only lineages for which the beneficial hypothesis was e6 ⇡ 400 times
more likely than the neutral hypothesis. Changing this threshold over 20-e-foldings does not significantly alter the
inferred distribution. This insensitivity to the peak of the distribution suggests that there may indeed be a peak in
the distribution at s ⇡ 4%.

2. Is the peak in the µ(s) distribution really a peak?

We observe a peak in the mutation rate fitness spectrum at s ⇡ 4%. For fitness effect s < 4% it is
difficult to conclusively say what the shape of the distribution is, or even whether it falls off or not.
However do we have some tentative evidence that there are fewer mutations at fitnesses s < 4%. If
the decline in the rate of mutation to fitness effects s < 4% were due to detectability issues one would
expect that as we change the threshold set for identifying lineages as either adaptive or neutral, this
would significantly alter the observed spectrum at low fitnesses. Specifically, being more liberal in
our calling of adaptive lineages should increase the number of small effect mutations we identify (as
well as introducing more “false positives”). Figure 37 shows the inferred spectrum µ(s) for varying
thresholds. The fact that the spectrum is so insensitive to varying the threshold (over a range of eight
orders of magnitude) suggests that the mutation rate to effects s < 4% may indeed be smaller than
it is at s = 4%. In other words, the observed peak at s = 4% may really be a peak in the underlying
spectrum.
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9.4 The need for high frequency resolution.

• How does the inferred distribution of fitness effects change with lower frequency resolution?

• What frequency resolution is required to fully observe the dynamics?

To observe and measure properties of a mutation around establishment requires a frequency resolution
capable of measuring lineages that are ⇠ 1/s ⇠ 100 cells in size. If the population size is N , then the
frequency resolution required is ⇠ 100/N , which in our case is ⇠ 10

�6 meaning the number of barcodes
needs to be ⇠ 10

6. (Note this will change slightly depending on the typical values of s in the system.
Fitness effects on the percent scale are however typical for many evolution experiments e.g. [16])

This condition could, however, be considered overkill. If one does not require observing the mutation
as it establishes, but instead only want to be sure that the expansion of a lineage is driven by a single
beneficial mutation, one requires a lower frequency resolution: lineage sizes must be ⌧ 1/U , which in our
case is ⇠ 10

4 cells per lineage. This condition would then require a frequency resolution of ⇠ 10

4/N ⇠ 10

�4

or in other words, ⇠ 10

4 lineages (though this clearly depends on the beneficial mutation rate of the system
in question).

The frequency resolution range required to the observe evolutionary dynamics of beneficial mutations
is therefore

1/s

N
< f <

1/U

N
(82)

where s is the typical selective effect and U the total mutation rate. The lower limit enables one to observe
all established mutations just as they reach establishment frequencies in the population. The higher limit
does not permit this, but does enable one to observe and measure the expansion of a lineage due to a single
beneficial mutation.

To illustrate this point, Figure 38 shows what the inferred µ(s) would be with progressively lower
frequency resolution. As one might guess, having the ability to measure only frequencies in the percent
range means one misses the vast majority of mutations. A related figure is shown in the main paper where we
plot how many adaptive lineages would be identified above a given fitness, for varying frequency resolution.
These plots confirm that to fully observe the evolutionary dynamics requires a frequency resolution ⇠ 10

�5.
Figure 4 of the main text shows another way of seeing the different distribution of fitness effects one

would see at lower frequency resolution. To make this plot we collected all barcodes that reach a frequency
above the quoted threshold by t = 100 (based on their inferred (s, ⌧) values), and plotted the distribution
of their inferred fitnesses, s. At lower frequency resolution one is restricted to observing far fewer beneficial
mutations, and those that are observed are confined to a narrow fitness range.

Required sequencing depth. A related question to the above is: what sequencing depth at each time
point is required in order to fully characterize the dynamics of each lineage? If the above considerations
require a number of unique lineages on the order of L ⇠ 10

6, then the total read depth required to measure
each of these well will be ⇠ 10 reads per barcode (depending on the fluctuations one is willing to accept)
which results in ⇠ 10

7 reads per time point. In our case, read depth across most time points was between
2� 8⇥ 10

7 (See Table 2). The exact depth required depends on how much variance in frequency one wants
to tolerate. The rule of thumb we used for our data was that the read depth in a lineage should introduce
about the same amount of variance in frequency as other factors such as drift, variance in offspring number
and variance introduced via DNA extraction and amplification (See Section 5). This means picking a read
coverage that is roughly equal to the bottleneck population size (in our case 7 ⇥ 10

7 cells), so for most
purposes

R ⇠ N
b

(83)

It should be noted however that a deeper read coverage could, in some contexts, be useful. For example, if
one wanted to precisely characterize the distribution of offspring number (see Section 5.4) one would want
the variance introduced by sampling of reads at the sequencer to be lower than the other contributions so
one would want a depth R � N

b

.

56 WWW.NATURE.COM/ NATURE | 56



0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

>1%

>0.3%

>0.1%

>0.03%

>0.01%

>0.003%

>0.0001%

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �
�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
10-11

10-8

10-5

10-2

������� ������ �

�
��
��
��

μ(
�)

>1%

>0.3%

>0.1%

>0.03%

>0.01%

>0.003%

>0.0001%

Figure 38: The inferred mutation rate fitness spectrum for E1 (left) and E2 (right) that would have been observed
at different frequency resolutions. For example, the top panel shows the distribution observed if only lineages that
reach > 1% in frequency (by t = 100) could be identified. A frequency resolution of O(10

�5
) is required to fully

characterize the distribution and the evolutionary dynamics.

10 Pre-existing mutations

Mutations inevitably arise during the period of common growth before the beginning of growth-bottleneck
cycles, i.e. t < 0 (Figure 39). Here we estimate how many beneficial mutations occur during this period
of prior growth and calculate how many of these are then sampled into, and establish, in both replicates
and how many are sampled into and establish in one replicate but not the other. We observe ⇠ 6, 000

lineages that are identified as adaptive in both replicates E1 and E2. The fitness effects of these mutations,
measured in the glucose limiting liquid environment used for t > 0, are almost exclusively in the range
2.5% < s < 4.5% and have early establishment times �100 < ⌧ < �20 (Figure 40). Together with
estimates of how many mutations could have arisen independently (Section 10.3), these facts leads us to
conclude that ⇠ 5, 500 lineages must have accumulated beneficial mutations that likely arose in the period
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of growth prior to the insertion of barcodes (Regions 1 and 2 in Figure 39) which were sampled into, and
established in, both replicates. In the following we outline the arguments that lead to these conclusions.
There are two distinct environments prior to t = 0: growth in YPD (regions 1 and 2 in Figure 39) and
growth on SC - ura plates (region 3 in Figure 39). We consider these separately as it is likely mutations
have different fitness effects in the two environments.

100

106

5 x 106

1010

1011

-48 -32 -16 0 16

N
um

be
r o

f c
el

ls

Time (generations)

Growth on YPD 
plates

Single cell !
bottleneck

Growth in YPD 
liquid

Growth on SC -ura 
plates

Growth in glucose-limiting 
minimal liquid media

Pick single !
colony 

Barcode 
transformation

Pool split into two independent 
replicates. Start of sequencing

3

108

4

s1 s2 s3 s

21

Figure 39: A single cell is grown on a YPD+Kan selectable plate to ⇠ 10

6 cells which equates to T ⇠ 20 generations
of growth (Region 1). Most of this colony ⇠ 10

6 cells is taken and further grown up though ⇠ 13 generations in
YPD liquid media to a total of ⇠ 10

10 cells (Region 2). These cells are then used in the transformation reaction
to incorporate the DNA barcodes. Of the ⇠ 10

10 cells that begin this process, only ⇠ 5 ⇥ 10

6 cells successfully
incorporate a barcode. Therefore each barcode tag is incorporated independently into ⇠ 10 different cells. These
grow through a further ⇠ 16� 18 generations (Region 3). Although more mutations arise in region 3 than in regions
1 and 2, most of these are present in a small number of cells and are unlikely to be sampled into the replicates E1
and E2 (Region 4). We observe ⇠ 6, 000 lineages that are adaptive in both E1 and E2. Of these, ⇠ 5, 500 occur
in regions 1 and 2 and ⇠ 500 are mutations that occurred independently in the same lineage in region 4. Very few
(perhaps ⇠ 200) lineages from region 3 establish in both replicates.

10.1 Pre-existing mutations from growth in Regions 1 and 2, before barcoding

We begin by determining how many mutations accumulate in the cells prior to barcoding. Growth before
the barcodes are inserted is in YPD media. The population size of all cells grows approximately as:

n(t) ⇡ 2

t (84)

for 0 < t < T with T ⇡ 33 (we ignore the very slight bottleneck between regions 1 and 2). Suppose that
the fitness effect of the pre-existing mutations in YPD is s

ypd

and that the feeding population gives rise
to these mutations at a rate u

b

. The first mutation will enter when u
b

2

t ⇠ 1 and reach a size u
b

2

T esypdT

by the end of the growth. It is unlikely that the factor of esypdT is very large since the fitness effects are
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typically ⇠ 3 � 5% and the time of growth is only ⇠ 33 generations. The second mutant to enter will do
so when u

b

2

t ⇠ 2 and reach size ⇠ 1/2 as large as the first. The third will be 1/3 as large as the first and
so on. Using results from the exponential feeding process in Section 13.5, (here ↵ ⇠ 1), the mutations that
enter during this period have typical sizes given by the following series

(Total number of beneficial mutant cells) ⇡ u
b

⇥ 2

T esypdT ⇥
✓

1 +

1

2

+

1

3

... +

1

m

◆
(85)

where each of the terms in the sum is the typical size of the first, second, third and eventually, mth mutation
that enters and where m ⇡ u

b

2

T is the total number of unique mutations that likely enter during this period
of growth. The total number of beneficial cells is then the sum of the above, which is approximately

(Total number of beneficial mutant cells) ⇡ u
b

2

T esypdT log(u
b

2

T

) (86)

Since the final population size is large enough that u
b

2

T � 1, the total number of mutations that enter
during this period, m, is large and the sum is not typically dominated by the earliest mutations. (Note,
however, that the size of the first mutation population has a power-law tail that decays as 1/n2 out to
2

T esypdT due to the possibility of an anomalously early mutation occurring, though such large fluctuations
are unlikely.) After this initial growth, a bottleneck is performed (corresponding to the 5 ⇥ 10

6 cells that
successfully incorporate a barcode) which reduces the number of beneficial cells to approximately

(Total number of beneficial mutant cells after barcodes inserted) ⇠ 5 ⇥ 10

6u
b

esypdT ln(10

10u
b

) (87)

How many lineages are called as adaptive because of these cells? Assuming that the fitness effect of pre-
existing mutations is similar in YPD as in the growth media of the experiment i.e. s

ypd

⇡ s ⇡ 3.5%, the
additional factor of esypdt is order e. If one assumes a reasonable mutation rate of u

b

⇠ 5⇥10

�5 (consistent
with our later inferences) this would predict that ⇠ 6, 000 cells with beneficial mutations from regions 1
and 2 should be sampled into each of the replicates. Each of these beneficial cells will likely have received
a unique barcode, since the number of barcodes (⇠ 500, 000) is much larger than the number of beneficial
cells that make it through the bottleneck. Note that for this analysis is does not matter much whether
each individual mutation has the same fitness in YPD and the main experimental medium: as long as the
distribution of fitnesses is similar at level of a few % — including later-beneficial ones being initially weakly
deleterious — the behavior will not be much different because the product sT is never substantially larger
than one.

How many of these ⇠ 6, 000 mutations will be establish and be detected in both replicates? Here an
important point to consider is that each barcode is incorporated ⇠ 10 times independently. If one of these
⇠ 10 cells has a beneficial mutation then, at the start of the experiment the number of cells sharing this
beneficial mutation will be ⇠ 10� 30 (at the bottleneck) or ⇠ 100� 300 cells using the effective population
size. Because of this, almost all of the ⇠ 6, 000 lineages with beneficial mutations from regions 1 and 2 will
establish in both replicates E1 and E2, and will have early establishment times. In fact the establishment
times can be estimated using the fact that 10% - 30% of the lineage will have beneficial cells so

n(t) ⇡ 0.3n
e

est =

es(t�⌧)

s
) ⌧ ⇡ �1

s
ln (0.3n

e

s) ⇠ �75 generations (88)

For s ⇠ 4%. Figure 40 shows that most mutations that are adaptive in both replicates E1 and E2 have
substantially early establishment times: in the region expected if they were to have arisen in regions 1 and
2.
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Figure 40: Fitness effect (left) and Establishment time (right) distributions of lineages colored accord to whether it
was adaptive in both replicates (⇠ 6, 000 lineages, purple) or only in E1 (⇠ 20, 000 lineages, green). Lineage adaptive
in both replicates have fitness effects in the 2.5% < s < 4.5% range. Their establishment times are early: in the
�150 < s < �50 range.

10.2 Pre-existing mutations from growth in Region 3, after barcoding

Region 3 in Figure 39 is growth on SC -ura plates after barcoding but before the separation of the replicates
E1 and E2. The ⇠ 5 ⇥ 10

6 cells that incorporate a barcode grow into colonies, which takes T ⇠ 16 � 18

generations. While the population grows from 5⇥10

6 ! 10

12 cells further beneficial mutations accumulate.
Denoting the fitness effect of the pre-existing mutations as s

sc

in this environment, each of the mutations
that enter in this region will be of typical size:

2 ⇥ 10

12esscTu
b

✓
1 +

1

2

+

1

3

...
1

m

◆
(89)

where again each term is the size of the first, second mutation and so on and where m ⇠ 2 ⇥ 10

12u
b

is the
total number of mutations that occur during region 3. While this number is likely substantial, most of the
mutations exist in small numbers of cells and hence are unlikely to be sampled through the bottleneck of
⇠ 10

8 into both replicates E1 and E2.
Number of mutations from Region 3 that establish in both E1 and E2. The mean size of the mutations

after the bottleneck will be

10

8esscTu
b

✓
1 +

1

2

+

1

3

...
1

m

◆
(90)

If the number of cells of a particular mutation sampled into E1 and E2 are n1 and n2 respectively, then the
probability that they establish in both replicates is ⇡ (1�e�n1ssc/c

)(1�e�n2ssc/c
). If k 2 [1, m] enumerates

all the mutants in Eqn. 90, then the expected number that establish in both E1 and E2 is

mX

k

"
X

n1,n2

⇣
1 � e�n2ssc/c

⌘⇣
1 � e�n1ssc/c

⌘
P (n1)P (n2)

#

k

(91)

Mutations that have a mean size after bottleneck from Eqn. 90 of hn
k

i � c/s
sc

all establish in both
because 1 � e�n1ssc/c ⇠ 1. For hn

k

i ⌧ 1 the probability of establishing in both is ⇠ s2
sc

hn
k

i2 (since
P (n

k

> 1) ⌧ P (n
k

= 1) one can consider only the possibility of singletons) meaning the expected number
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of rare mutants that establish in both replicates is

10

8esscTu
b

mX

k

✓
s
sc

/c

k

◆2

(92)

which is dominated by the k for which hn
k

i ⇠ c/s
sc

. The expected number that establish in both is therefore
dominated by how many mutants get sampled with sizes of order ⇠ c/s and above. This is the same as
asking how many terms in the series in Eqn. 90 are of order c/s which gives

(# mutations that establish in E1 and E2 from region 3) = 10

8esscTu
b

(s/c) (93)

Number of mutations from Region 3 that establish in E1 or E2. The expected number of mutations that
establish in one replicate and not the other is

2

X

k

"
X

n1,n2

e�n1s/c
⇣
1 � e�n2s/c

⌘
P (n1)P (n2)

#

k

(94)

In contrast to the above case where mutations establishing in both was dominated by those that have
expected sizes of ⇠ c/s, for mutations that establish in one and not the other the dominant contribution
to the sum for the number of mutants come from mutations that are present in essentially one copy after
bottlenecking, the vast majority of all the mutations that occur:

10

8esscTu
b

mX

k

(s/c)

k
⇠ 10

8esscTu
b

(s/c) ln (m) ⇠ 10

8esscTu
b

(s/c) ln

�
10

12u
b

�
(95)

Assuming the mutation rate to the pre-existing mutations is similar to the value inferred for regions 1 and
2 (⇠ 5 ⇥ 10

�5) and that the fitness effect of pre-existing mutations in SC -ura plates is (s
sc

) is similar to
that in both YPD and in the glucose limited media, this predicts that a further ⇠ 200 lineages would be
adaptive in both E1 and E2 because of beneficial mutations from region 3 and ⇠ 4, 000 lineages are adaptive
in one replicate but not the other.

The ⇠ 4, 000 beneficial mutations that are predicted to establish in one replicate but no the other do
not have substantially negative establishment times. The majority of these mutations begin as singletons
in one of the replicates and hence the distribution of their establishment times will be similar to that of a
mutation present in a single copy at t = 0. Establishment times of these mutations can therefore extend
back to as early as ⌧ ⇠ �1/s generations but not substantially further and likely (in part) account for the
⇠ 5, 000 mutations whose establishment times are �50 < ⌧ < 0.

10.3 Number of lineages with adaptive mutations in both replicates if acquired independently

We observe ⇠ 6, 000 mutations that are identified as adaptive in both replicates E1 and E2, which broadly
agrees with how many we would expect as a consequence of common growth prior to barcoding. However,
barcodes that are called as adaptive in both replicates E1 and E2 could also arise by truly independent
mutations occurring in the same barcode at times t > 0. How many barcodes are expected to be called as
adaptive in both E1 and E2 because of independently occurring mutations? Assuming all lineages have the
same probability of accumulating a beneficial mutation we would predict

# independent mutations adaptive in both ⇠ (#adaptive in E1) ⇥ (#adaptive in E2)
Total number of lineages

⇠ 500. (96)

(This is not quite right because not all lineages have the same probability of accumulating a beneficial
mutation. Larger lineages have a greater chance than small ones. If one accounts for the fact that the
probability of accumulating a beneficial mutation is not uniform because there is an initial distribution
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of lineage sizes this answer gets modified by a factor hn2
0i/hn0i2 where n0 is the initial lineage size and

averages are over the distribution of initial lineage sizes. However since the distribution of initial lineage
sizes is almost exponential (Figure 14) this factor is ⇠ 2 and therefore the number of lineages we expect
to be identified as adaptive due to independent mutations occurring in the same barcode remains < 1000).
This leaves ⇠ 5, 000 mutations that must be pre-existing mutations (occurred with ⌧

mut

< 0) that were
sampled and then established in both replicates. This number agrees with the number we expect from the
previous estimates.

10.4 Checking self-consistency using the high-fitness mutations

Another check on the consistency of our inferences comes from considering the high fitness effect mutations.
We infer that high fitness-effect mutations (s > 0.08) occur with a rate U

s>0.08 ⇠ 2 ⇥ 10

�7. If this is the
case, then we should expect a number of these to occur during the common growth before barcoding and be
sampled into both E1 and E2. How many should be sampled into both? The earlier estimates for mutations
in the 3�5% range assumed a mutation rate of U0.03<s0.05 ⇠ 5⇥10

�5 and concluded that ⇠ 6, 000 mutations
should be common across replicates. If mutation rates are reduced to U

s>0.08 ⇠ 2⇥10

�7 this would predict

Lineages with s > 0.08 adaptive in E1 and E2 ⇡ 0.004 ⇥ 6000 ⇡ 25 (97)

This broadly agrees with the number we see (29).

10.5 Identifying pre-existing mutations

For any given adaptive lineage can we say whether the mutation within it was pre-existing? There are two
pieces of information that inform us: whether the same lineage is identified as adaptive in both replicates
and how early the establishment time of the mutation is.

If a mutation is identified as adaptive in both replicates E1 and E2 then it is likely it was pre-existing
since only ⇠ 500 are expected by chance to occur independently in the same lineage. In the s � ⌧ scatter
plots in the paper these are colored purple. As discussed in Sections 10.1 and 10.2, the majority of these
mutations likely arose in regions 1 and 2 during the common growth before barcoding (Figure 39).

Some mutations however will have occured during prior growth but will establish in one replicate and
not the other. The majority of these mutations arose during growth after barcoding, before the splitting
of the replicates (Region 3, Figure 39). Furthermore, most of the beneficial mutations that accumulate in
Region 3 and that get sampled into one of the replicates are most likely to do so in a single copy (as discussed
above in Section 10.2). It is not possible to individually distinguish such mutations from mutations that
arose in the first few generations of growth for t > 0. The reason is that the distribution of establishment
times for a mutation present in a single cell at t = 0 is broadly distributed around t = 0 with errors of ±1/s
meaning that the distribution of establishment times for these mutations overlap substantially.

However, while we cannot individually distinguish mutations that arose in the region �16 < t < 0 from
those that arose in the first few generations t > 0, we can account for their effect on the total number of
cells and hence for their effect on the total beneficial mutation rate.

If mutations in the fitness range [s, s + �s] occur at rate µ(s)�s, using the same arguments as outlined
in Section 10.2, the total fraction that accumulate in Region 3 (Figure 39) and that make it through the
bottleneck to be sampled into one of the replicates is

(fraction of cells from region 3) = µ(s)�s ln(N
f

µ(s)�s) (98)

where N
f

⇡ 10

12 is the total number of cells at the end of region 3 before the bottleneck is imposed. As we
outline in the following section, this fraction of cells that can be assigned to mutations entering in region 3
can be taken into account when estimating the beneficial mutation rate to each fitness effect.
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11 Inferring the mutational fitness spectrum µ(s)

The spectrum of the fitness-dependence of mutation rates, µ(s)ds, we define as the mutation rate per cell
per generation to mutations whose fitness effects are in the range [s, s + ds]. We can use the inferred values
of (s, ⌧) for each barcode lineage to infer µ(s)ds for beneficial mutations in two distinct, though related
ways described in the following two sections.

Separating out pre-existing mutations. As highlighted in Section 10, evolution does not begin at t = 0

but rather the moment from the last common ancestor. Mutations can, and do, arise in the generations
of growth preceding the separation of the two replicates E1 and E2. This prior growth passed through a
number of different environments e.g. growth in liquid and growth on selectable plates. To determine the
distribution of fitness effects µ(s)ds in the constant environment at t > 0 therefore requires the ability to
account for how many mutations we observe come from the period of prior growth. We outline how we do
this in each of the following two sections.

The method we actually use to infer the distribution of mutation rates across fitness effects quoted in
the main paper is the deterministic approximation (described in the next section). We note however that
both methods give broadly consistent conclusions.

11.1 Deterministic approximation, "Predominant" s, and stochastic transition

The deterministic approximation makes use of the fact that, if mutations of effect sizes in the range [s, s + ds]
are being fed from a large population of N

e

neutral cells at a rate of µ(s)ds, then, provided the product
N

e

µ(s)ds � 1 the total fraction of cells in the population with fitness in the range [s, s + ds] is

f(ds, t) =

µ(s)ds

s
est (99)

Therefore by measuring f(ds, t) we can infer the mutation rate to that range of fitness effects. In order to
do this correctly however, we must account for the effects of pre-existing mutations.

Accounting for pre-existing mutations. The inevitable expansion of mutations as the population grows
up from a single cell to the final barcoded library (i.e. those that arose prior to t = 0) affect estimates of the
beneficial mutation rate using the deterministic approximation, because they increase the fraction f(ds, t)
of cells in a given fitness range. How do we account for this? First, any lineage that is adaptive across both
replicates E1 and E2 is excluded from the analysis of rates: this excludes the mutations that very likely
arose before the barcoding process (regions 1 and 2 in Figure 39). Second we calculate what fraction of
cells in a given fitness range likely arose after barcoding but before the separation of the replicates (region
3 in Figure 39).

(additional fraction from mutations arising in region 3) = µ(s)�s ln(N
f

µ(s)�s)est (100)

Where N
f

⇠ 10

12 is the maximum population size the population reached after barcoding, before the
separation of the replicates (see Figure 39). Accounting for this additional fraction of cells means that the
expression for µ(s)�s becomes

µ(s)ds =

f(ds, t)

1 + s ln(N
f

µ(s)�s)
(101)

which is the formula we use to infer the distribution of mutation rates. We note that the magnitude of the
logarithmic term from mutations that arose after barcoding but before the t = 0 bottleneck assumes that
over the T ⇠ 16 generations the exponential growth advantage of the mutants is not a huge effect since
esT � 1 ⇠ 2. For the typical number we infer here µ(s)�s in the range [3%, 5%] is ⇠ 10

�5 and N
f

⇡ 10

12

meaning that the logarithmic term is half the size of the original term, that is, the contribution to total
number of cells as a function of time from mutations that arose in the time range �15 < t < 0 is about
half of that from those that arise t > 0.
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Predominant s. The deterministic approximation, which holds provided Nµ(s)ds � 1 ,can be used
to determine which range of s contributes most to driving the mean fitness at a given time. The major
contributor to the mean fitness is the class of mutation that has the most cells, i.e. which s mutants are
most abundant in the population. In the deterministic approximation this is determined solely by the
product

µ(s)est (102)

(provided st � 1). Maximizing this over s we can determine the predominant fitness range s
dom

(t) that is
most abundant at time t. This s

dom

(t) must satisfy

dµ

ds
|s

dom

= �tµ(s
dom

) (103)

(if there are multiple solutions then the one with the largest µ(s
dom

)esdomt is the predominant one). One
can visualize this by drawing the distribution of fitness effects on a log-scale and then constructing a line
with gradient �t. Lowering the line with gradient �t from above, the first point on the ln(µ(s)) curve that
is tangent to the line determines the predominant s, as shown in Figure 41.

Break-down of the deterministic approximation. Eventually, as rarer mutations enter and expand, the
predominant fitness s

dom

increases enough that one enters a regime where

N
e

˜U(s > s
dom

) ⇠ 1 (104)

that is, where the predominant mutations are rare enough that only one (or perhaps a handful) will
contribute to the expansion. In this case the dynamics of the mean fitness and of the expansion of the
fittest class of mutations in the population becomes stochastic because they are no longer the aggregate
effect of a large number of independent mutations. This is beginning to be the case for mutations with
s > 0.08 in our data. Consider mutations in the range 0.095 < s < 0.105. The rates of beneficial
mutations inferred here are ⇠ 10

�7, meaning we expect only N
e

⇥10

�7 ⇡ 50 mutations to contribute to the
expansion. Even further out, in the range 0.13 < s < 0.14 mutation rates are inferred to be ⇠ 10

�9 giving
a N

e

⇥ 10

�9 ⇡ 0.5. Such rare mutations will be stochastic, and indeed one finds that the two replicates
look significantly different and noisy in this region (see Figure 3 in main paper) which contrasts with how
similar they look in the more deterministic region at earlier times. When the deterministic approximation
breaks down, reliably inferring rates becomes more challenging as only a small number of events ever occur.
In addition, the details of the growth process and the variance in offspring number now become important
because it is the first mutational event rather than the mean of the effects of many that matters most.
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Figure 41: The fitness effect s that drives the mean fitness higher depends on the both the shape of the mutational
fitness spectrum µ(s) and on the time t. The highest point on the curve ln(µ(s)) that is tangent to the line �t defines
the fitness effect s that is dominating the mean fitness rise (the class with the most cells). If the shape of µ(s) is
non-convex (as we measure in this experiment) then the s

dom

than drives the dynamics takes discontinuous jumps.

11.2 Estimating Errors on µ(s) from the deterministic approximation

The deterministic approximation for inferring µ(s) only has significant errors when the number of mutations
contributing to the growth of a fitness class is small. More concretely, the size of a fitness class is

n(t) = ⌫
est � 1

s
(105)

where h⌫i = Nµ(s)�s and its variance is ⇠ Nµ(s)�s. This means that the typical error in the inferred
values of µ(s)�s are order ±

p
µ(s)�s/N . These are shown as shaded regions in Figure 3 of the main text.

However, there are also other sources of error. In our case there is uncertainty on which lineages
accumulated mutations before or after the separation of the two replicates at t = 0. In order to capture
the uncertainties associated with this, we used a “conservative” and “liberal” approach to estimate how
many pre-existing barcodes there are. The conservative approach estimated the number by conditioning
on barcodes being adaptive across both replicates and having establishment times ⌧

est

< �2/s. The liberal
approach approach did not condition on establishment time. In the distributions of µ(s) in Figure 3 of the
main text, the upper bound for µ(s) is calculated using the conservative (i.e. smaller) set of pre-existing
mutations excluded combined with the +

p
µ(s)�s/N uncertainty from above, while the lower bound is

calculated using the liberal (i.e. larger) set of pre-existing mutations excluded and the �
p

µ(s)�s/N
uncertainty from above.
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11.3 Comparison of µ(s) from E1 and E2
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Figure 42: Comparing the inferred µ(s) distribution from E1 (blue) and E2 (yellow). Accounting for the �s = 0.008

systematic difference between E1 and E2, the inferred distributions are strikingly similar sharing features at low,
intermediate and high fitness. Neither of the two distributions is consistent with an exponential distribution (gray
line with errors as gray shading). The errors on the exponential are calculated based on errors associated with the
small numbers of mutations in a fitness class (see Section 11.2)

11.4 Inferring µ(s) by counting the number of mutations in �s

Another method to infer the mutation rate to the range [s, s + �s] is to count the number of mutations
that have been identified as adaptive over a period of t generations. This method does not weight early
(and hence abundant) mutations any more than late ones unlike the deterministic approximation. This has
the added benefit that pre-existing mutations that arose after barcoding, but before the separation of the
replicates (region 3, Figure 39) have less of an impact on estimates. However this method is more sensitive
to our confidence in calling adaptive lineages in the first place, and because it counts number of mutations
versus numbers of cells is sensitive to details of the growth process e.g. the changing population size and the
variance in offspring number. Because of this, we elected not to use this method to infer the distribution
of mutation rates across fitness effects quoted in the paper, however we did infer the distribution using this
method to check our estimates were broadly consistent with the deterministic approximation method. We
outline below how we did this.

If the effective population size governing the rate at which beneficial mutations establish is N
e

then
after t generations the number of mutations that have entered and established should be

(number of mutations in �s) ⇡ N ⇥ (µ(s)�s) ⇥ (s/c) ⇥ t (106)

where the term (s/c) is the probability that a mutation establishes in the population given it has entered.
For our purposes this simple expression must be modified to account for two things:

1. The feeding population N
e

declines over time because of the mean fitness increase
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Figure 43: Comparing two methods of inferring the distribution of mutation rates to different fitness effects from
simulations. The simulations were performed using a uniform distribution of mutation rates (shown as the horizontal
dashed line). Each plot shows the inferred rates to bins of width ds = 0.0025 for the deterministic approximation
(black lines) and method using raw counts of mutations (circles). (A) shows the inferences for S1 while B shows the
inferences for S2. Clonal interference and finite lineage size prohibit small effect mutations from ever being detected.
The reason for the consistent decline of the circles at later times is an artifact caused by estimations of the time
window available for mutations to occur. As shown in Figure 46 high fitness effects that approach the maximum are
estimated to have longer to occur than they actually do.

2. The relevant time determining the number of mutations detected is not the time of the evolution t
but the time t� (1/s) ln(n

e

s/c) (see Figure 36) which is the time before which a mutation must occur
to have a significant chance of being detected.

With these two modifications the number of mutations identified as adaptive in the range [s, s + �s]
becomes

(number of mutations in �s) = (µ(s)�s) ⇥ (s/c) ⇥ N
e

Z
t�(1/s) ln(n0s/c)

0
e�x̄(t)dt (107)

which can be inverted to estimate µ(s). We verified that this method produced similar values for the
mutation rate as the deterministic approximation and that both produce inferences in agreement with
known rate of beneficial mutation from simulations (Figure 43). This method is likely a better approach
for inferring the mutation rates to higher-fitness effect mutations that occur less often since it weights
mutational events evenly. It is also less likely to suffer from distinguishing between pre-existing mutations
and those that arise after the separation of the replicates.

12 Simulated data set

To test our methods we analyzed a simulated data set that recreates as faithfully as we can all aspects of
the true data set — including the 48 generations of common growth prior to growth-bottleneck cycles —
and analyzed it using the same methods as for the real data. As in the real data we “evolve” two replicate
simulations S1 and S2 that are seeded from a common pool of barcodes that has undergone the prior growth.
By comparing inferred values to the known values from the simulations reveals that the methods used to
determine the fitness effect and establishment times are accurate.

12.1 Simulation details

Parameters. The parameters used for the simulation are as follows

67 WWW.NATURE.COM/ NATURE | 67



Parameter Symbol Value

Bottleneck Population size N
b

5 ⇥ 10

7

Saturation Population size N
s

⇠ 1.3 ⇥ 10

10

Effective population size N 4 ⇥ 10

8

Generations between “transfers” T 8

Total beneficial mutation rate U
b

10

�5

Distribution of fitness effects ⇢(s) uniform(0, 0.125)

Generations of prior growth — 48

Generations of evolution — 120

Number of barcode lineages — 500, 000

“Reads” per time point R 3 ⇥ 10

7

Efficiency of PCR � 0.02

Growth and bottlenecks. Growth is performed in discrete generations where the population of cells in the
t + 1 generation follows from that in the t generation via

Number cells at t + 1 from single cell at t = X(2) If neutral (108)
Number cells at t + 1 from single cell at t = X(2(1 + s)) If has mutation with s (109)

After 8 such doublings the population is at saturation where the number of cells in our given barcode is
n
s

. Those cells are then Poisson sampled at a rate � = 0.02 to produce the k
b

copies of “template DNA”
that are present for amplification. These k copies undergo 23 rounds of doubling (modeling PCR) using
the same procedure as before, namely k

t+1 = X(2k
t

). The number of copies of each barcode at the end of
this amplification stage is k

s

. (Note that the details of the number of “cycles" is not very relevant: all noise
comes from the early rounds when numbers are small hence things are left unaffected whether we have 10
or 23 cycles). The number k

s

of copies of template DNA after “amplification” physically corresponds to the
number of copies of the short product DNA that would be sent to the sequencer.

The next 8-generation cycle is started by sampling a fraction � = 2

�8 of the saturated population and
again allowing the cells to grown up by a factor of ⇠ 2

8 and once again performing the simulated versions
of PCR and sequencing.

Modelling sequencing. Reads for each barcode r are generated by further Poisson sampling each barcode
at a rate determined by its frequency in the short product DNA and the read depth R namely

r = X

✓
R ⇥ k

sP
i

k
s

(i)

◆
(110)

where i indexes all barcodes. The combined levels of noise from the simulation performed this way is the
same as measured for the experimental data.

Mutation. Each generation a cell has a probability µ(s)ds = U
b

ds of getting a mutation in range s, s+ds.
This is achieved via a Poisson sample with mean U

b

= 10

�5. If the sampled yields a positive result (if it
does, it is likely to be a singleton) this cell has its fitness effect drawn from a uniform distribution in the
range [0, 0.125]. To model exclusively the effect of single mutants, once a cell gets one beneficial mutation it
cannot mutate again. The distribution of mutation rates across fitnesses was chosen to be uniform because
this offers the best chance of observing where biases due to detectability enter. The upper limit s = 0.125

was chosen since this is roughly the scale of the largest mutations observed in our experiment.
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Prior growth and pre-existing mutations. Insertion of each of the 500,000 barcodes is modeled by drawing
a number of cells c = X(10) where X(n) is a Poisson sample with mean n. To include the effects of the the
T ⇠ 33 generations of growth prior to barcoding each cell has a probability of having a beneficial mutation
in this drawing process. The probability is ✏ ⇠ 600/(5 ⇥ 10

6
), which is the number of beneficial cells

expected from T = 33 generations of growth from a single cell up to 10

10 cells with a beneficial mutation
rate of 10

�6 assuming they remain neutral over this growth process. These 5 ⇥ 10

6 cells labelled with
500,000 barcodes are then grown for T = 16 generations and permitted to undergo mutation. This common
pool is then sampled into two independent simulations which are “evolved” for 120 generations.

12.2 Simulation results
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Figure 44: The trajectories of a subset of the 500,000 lineages colored according to to their probability of harboring
a beneficial mutation for the two replicate simulations S1 and S2. In S1 7,621 adaptive lineages are identified by
t = 120 and in S2, 7,747. Inset: The mean fitness inferred from the decline of neutral lineages (blue circles) agrees
with the mean fitness calculated from the beneficial lineages (red line). Note there appears to be an offset of ⇠ 4

generations which arises because the mean fitness inferred from decline of neutral lineages is measured between two
time points t and t + 1 which is 8 generations later. It is plotted at the time point corresponding to t + 1 though
more probably reflects the mean fitness somewhere in the previous 8 generations.
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Figure 45: Joint distributions of the fitness effect (y-axis) and establishment times (x-axis) for the ⇠ 7, 000

mutations identified as adaptive in each of the two replicate simulations. The number of pre-existing mutations that
are sampled into both replicates is is 895 of which 620 establish and are identified as adaptive in both (red circles).
Blue circles indicate lineages that we not identified as adaptive in both replicates. The area of the circles indicate
the frequency of the lineage at t = 88. The detectable limit calculated using the result from Section 9.2 capture the
limits of detection well.
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13 Mathematical background

We now present the mathematical background needed to model the early dynamics of mutations, drift,
and selection. While rare, the fate of a single cell and its descendants is independent of the others: this
independence enables the use of general branching process methods. The overall goal is to be able determine
the probability distribution over offspring numbers given various initial (and other) conditions.

13.1 Birth-death process

While the methods and the results we require to model lineages are more general (as we shall discuss)
the simplest model to understand the statistics of mutations subject to drift and selection is a birth-death
process for which in each unit of time there is a probability that a cell either divides or dies determined by
birth and death rates.

t

t + �t

Nothing

Die

Divide
B�t

D�t

1 � (B + D)�t

Figure 46: The birth-death branching process. In each time interval �t a cell can do one of three things (i) nothing,
(ii) die and (iii) divide. For each cell these probabilities are independent.

At time t there are n(t) cells. In a small interval of time �t, a cell can (i) do nothing, (ii) die or (iii)
divide. The basic simplification is that cells are independent of one another (how many offspring one has
does not influence the others): we can then write down how the number of cells changes in �t:

n(t + �t) =

n(t)X

j=1

1 + X
j

(B�t) � X
j

(D�t) (111)

Where X
j

are the random numbers of births / deaths for the jth cell and are drawn from (say) a Poisson
distribution (though other distributions could equally be used), B the birth rate, D the death rate.

It is very useful to consider the dynamics of the moment generating function, defined as hexp(��n)i.
These dynamics can be obtained by propagating the expression for the moment generating function in time
�t:

M(�(t + �t)) = hexp [��(t + �t)n(t + �t)]i
n(t+�t) (112)

Substituting in for n(t + �t) in terms of n(t) using the stochastic equation above, conditioning on having
n(t) and averaging over the stochastic variables X that occur between t and t + �t:

**
exp

2

4��(t + �t)

0

@
n(t)X

j=1

1 + X
j

(B�t) � X
j

(D�t)

1

A

3

5
+

X

+

n(t)

(113)

Since all the processes are independent of one another the averages over X can be written as products of
the following form, where each one gives the generating function for a Poisson distribution
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hexp [±�(t + �t)X(B�t)]in(t)
X

= exp

h
B�t

⇣
e±�(t+�t) � 1

⌘i
(114)

By imposing that the form of the moment generating function remains invariant we impose a condition
relating �(t) to �(t + �t) and therefore we realize that all the terms multiplying the n must be ��(t).

We can now expand the terms in � as a power series, and simplify to the case of interest for which the
fitness, s = B � D, is the average difference between births and deaths in a single generation, is a small
parameter. We then get:

��
↵

(t) = �(t + �t) � �t(B � D)�(t + �t) + �t
B + D

2

�2
(t + �t) (115)

Which gives a differential equation for � running backwards in time, or forwards in ⌧ = T � t

@�

@⌧
= s� � c�2 (116)

with �(⌧ = 0) = �(T ). At this point we have generalized somewhat and replaced the variance per genera-
tion, which is B+D, for the simple model, by a more general variance in the number of offspring per average
generation time, defining the parameter c to be half the variance in offspring number per generation: this
depends on the specific birth death model — for example the fluctuations in the growth-dilution cycle of the
experiments. (For continuous time division, c = 0.5). We now need to solve this backwards time equation
to find �(⌧) in terms of its initial condition �(T ). (Note that this is analogous to solving Komogorov’s
backwards time equation by Laplace transforming and using method of characteristics in the transformed
variables, �). Setting ⌧ = T we obtain �(0) in terms of �(T ). We then have the generating function at all
times because we know initially there were n(0) cells at time t = 0 and so initially the generating function
was

M(�) = e��(t=0)n(0) (117)

Substituting in for �(0) in terms of �(T ) we obtain the generating function for all times. Note that by
expanding in � we have effectively ignored the discreteness of the number of cells. This gives correct results
for small s and all n, including n = 0, except for n = O(1) for which details of the birth-death process
matter.

13.2 Distribution of offspring from a single founding cell

It is instructive to consider the solution to this generating function in a few special cases the most important
being that of a single mutant cell and its descendants. The solution to Eqn. 116, @�/@⌧ = s� � c�2, is

�(0) =

a�(t)

1 + b�(t)
(118)

where

a = est and b ⇠ (c/s)(est � 1). (119)

The generating function for the number of offspring at time is then simply

M(�) = exp

✓
� a�

b� + 1

◆
(120)

where � = �(T ).
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The extinction probability — simple from generating functions — follows immediately since P (n = 0) =

M(� = 1). This yields the extinction probability

P (n(t) = 0) = e�a(t)/b(t) ⇡ e�s/c. (121)

for long times: st � 1. For small s, which we are interested in, the exponential can be expanded and the
establishment probability,

P
est

= 1 � P
extinct

⇡ s

c
. (122)

We can also obtain the full distribution of offspring by inverting the generating function using the inverse
Laplace transform. But as the one initial cell is small compared with the characteristic number for estab-
lishment, c/s, and we are interested in the behavior for numbers of this order or larger, the exponent will
be small and the exponential can be expanded so the moment generating function reduces to

M(�) ⇡ 1 � a�

b� + 1

(123)

which is simply the Laplace transform of

P (n) =

⇣
1 � a

b

⌘
�(n) +

a

b2
e�n/b. (124)

This is thus one way of deriving the expression in Eqn. 3. and showing that it is valid generally.

13.3 Distribution of offspring from n founding cells cell

The picture is similar starting with n0 founding cells. The generating function is of the same form

M(�) = = exp

✓
� a�

b� + 1

◆
(125)

only now a = n0e
st. The extinction probability is then P (n = 0) ⇡ exp(�n0s/c) which is why the

establishment size (above which it is unlikely the mutation will fluctuate to extinction) is n ⇠ c/s. The
inverse transform can be found exactly, giving a solution in terms of Bessel functions of the first kind (I1):

P (n) = I1

✓
2

p
an

b

◆
exp

✓
�n + a

b

◆
1

b

r
a

n
(126)

however it is more instructive to invert it approximately: for large n using a saddle point approximation
yields the probability distribution:

P (n) ⇡

s
a1/2

4⇡bn3/2
exp

"
�(

p
n � p

a)

2

b

#
(127)

In the limit of large n this develops an exponential rather than Gaussian tail with a characteristic decay
length of (c/s)(exp(st) � 1). Close to the mean however, it remains Gaussian with variance ⇠ e2st. This
expression is remarkable accurate over almost the entire range of n (excluding very small n, where it breaks
down, see Figure 47).
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Figure 47: The distribution of lineage size under a birth death process. Initally N = 30 cells. Histograms are the
result of 10,000 simulations whereby each cell can give rise to a Poisson distributed number of offspring in the next
generation with mean 1 + s (here s = 0.05) and a variance around this of 2c = 1. The analytic expressions obtained
via the saddle-point approximation are plotted as the colored curves. Color is only used to help distinguish between
time points.

13.4 The distribution of a mutant class being constantly fed by mutation

We next consider an approximately constant sized ancestral population that produces beneficial mutations
at a constant rate R = NU , with each mutant behaving as those we just discussed. The distribution of
offspring is now a convolution of all the mutants that enter over time. Since convolutions are products of
the moment generating function, and since � is the exponent, this translates to an integral of the original
expression for � = a�(t)/(1 + b�(t)) over time:

�(0) = R

Z
t

0

a(t)�

1 + b(t)�
dt = R ln (ñ� + 1) (128)

where ñ = (c/s) [exp (sT ) � 1]. It is more convenient to rescale n by ñ and consider the generating function
for ⌫ = n/ñ, which we denote hexp(�⌘⌫)i yielding

M(⌘) = (1 + ⌘)

R (129)

This can be inverted exactly to yield the probability distribution over ⌫ = n/ñ

⇢(⌫)d⌫ =

d⌫

�(R)

e�⌫

⌫1+R

(130)
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Finally, we can derive the distribution distribution of establishment times for the constant feeding process
by using the definition of the establishment time ⌫ = e�s⌧ . Substituting this in gives

⇢(⌧)d⌧ =

sd⌧

�(R)

exp

�
�Rs⌧ � e�s⌧

�
. (131)

which is the same as quoted in Eqn. 7

13.5 The distribution of a mutant class being exponentially fed by mutation

Next, we consider generation of second beneficial mutants. Instead of a constant population feeding mutants,
we thus consider a population of cells growing exponentially

n1 = Nes1t (132)

that feeds beneficial mutations with fitness effects of s2 at a rate of U per cell per generation. We want to
determine the statistics of the sizes (number of cells) of the beneficial double-mutant sub-populations that
enter and are destined to survive (Figure 13.5). The distribution of the total size of the resulting double
mutant population can be obtained in an equivalent way to the constant feeding population case where we
noticed that it is the convolution over time and hence an integral over �:

�(0) = N

Z
t

0
es1t

a(t)�

b(t)� + 1

dt (133)

where we note the additional factor of es1t in the numerator and that now a = es2t and b = (c/s2)(e
s2t �1).

This can be examined asymptotically, though involves some subtleties. It is more instructive to consider
the statistics of single mutations and their occurrence times. Consider the first mutation (a) that enters at
t
a

and is destined to survive drift. It will reach a size

n
a

=

es2(t�t

a

�⌧)

s2
(134)

after time t, where ⌧ is a random variate from the establishment-time distribution of a single mutation
(See Eqn.5) and is typically zero with an error of ±1/s generations. What is the distribution of t

a

? The
cumulative number of divisions the feeding population undergoes between time t1 and t2 is

J =

N(es1t2 � es1t1)

s1
. (135)

For the first double mutant to occur in the interval dt
a

around t
a

requires that all previous mutations failed
to establish, which has probability

(1 � Us2)
J ⇡ exp

�
�(NU/↵)es1ta

�
(136)

where ↵ = s1/s2. And the mutation that is destined to establish must occur in the interval dt
a

which has
probability

n1 ⇥ Us2 ⇥ dt
a

= (NUs2) exp (s1ta) dt
a

(137)

Thus the probability of the first mutation that is destined to establish occurring in the interval dt
a

around
t
a

is

⇢(t
a

)dt
a

= (NUs2) exp

�
s1ta � (NU/↵)es1ta

�
dt

a

(for t
a

> 0) (138)

This is plotted in Figure 49. This can also be cast as a distribution over the size of the first mutant ⇢(n
a

)dn
a
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Figure 48: A population of cells growing like nes1t feeds mutants at a rate of U
b

, with fitness effects of s2.
Independent mutation enter and establish (a, b, c...) from this growing feeding population. The relative sizes of the
mutants is typically 1, 1/2, 1/3... if s1/s2 ⇡ 1 .

by substituting using Eqn. 134 giving

⇢(n
a

)dn
a

= (NU)ñ↵

exp

✓
�NU

↵

⇣n

ñ

⌘
↵

◆
dn

a

n1+↵

a

(139)

where ñ = es2t/s2.
One can think of the process of getting the second mutation, b, as the same as the first except time

starts now at t
a

and the initial population size is n0e
s1ta . Hence the distribution of �t

b

= t
b

� t
a

is the same
as for t

a

with the replacement n0 ! n0e
s1ta and so on for extensions to mutation c (Figure 49). What does

this imply for the typical size of the mutants? If we take the median time t
k

for all mutations, using Eqn.
134 we have that the size of the kth mutation to enter is

n
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Figure 49: The establishment times for the first mutation (top) second mutation (second from top) and so on for
mutations fed from an exponentially growing population.
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