Chapter 9

Multi-locus models of evolution

Next Steps: now that we have methods for measuring genomes (or amplicons)

$$
\lceil=0 \text { clone } n
$$

\Rightarrow need models to predict $f(\vec{g})^{\prime}$'s that anse dunning evolution

For genome of length $L \Rightarrow 2^{L}$ possible genotypes

$$
\begin{aligned}
& \text { e.g. } L=1: \quad g=0,1 \Rightarrow \underbrace{f(1) \equiv f}_{\text {mutant }}, \underbrace{f(0)=1-f}_{\omega T} \\
& L=2: \quad \vec{g}=\underbrace{(0,0)}_{\omega T}, \underbrace{(1,0),(0,1)}_{\text {single moments }}, \underbrace{(1,1)}_{\text {double mutant }} \\
& L=3: \quad \vec{g}=(0,0,0), \underbrace{(1,0,0)}_{\text {single }}, \ldots, \underbrace{(1,1,0)}_{\text {double }}, \ldots, \underbrace{(1,1,1)}_{\text {triple mutant }} \\
& \vdots \\
& \text { etc. }
\end{aligned}
$$

Can we geneanlize our serial dilution (diffusion) models?
(1) Genetic drift: first assume no growth mate differences...
(anomulims)
\Rightarrow After I day of growth (before dilution):

$$
f(\vec{g}) \xrightarrow{\Delta t} \frac{f(\vec{g}) e^{r \Delta t}}{\sum_{\vec{j}^{\prime}} f\left(\vec{j}^{\prime}\right) e^{r \Delta t}}=\frac{f(\vec{g})}{\sum_{\vec{g}} f\left(\vec{g}^{\prime}\right)}=f(\vec{g}) \quad\binom{\text { ie. no change }}{\text { in fris }}
$$

\Rightarrow After dilution step:
(i) $n(\vec{g}, t+\Delta t) \sim \operatorname{Poisson}\left(\bar{N}_{0} \cdot f(\vec{g})\right)$
(sampling)
(ii) $f(\vec{g}, t+\Delta t)=\frac{n(\vec{g}, t+\Delta t)}{\sum_{\vec{g}^{\prime}} n\left(\vec{g}^{\prime}, t+\Delta t\right)}$
(re-normalize)
\Rightarrow if repeat our Taylor expansions from Ch 4 (\bar{N}_{0} large):

$$
n\left(\vec{g}_{1} t+\Delta t\right) \sim \bar{N}_{0} f(\vec{g}, t)+\sqrt{\bar{N}_{0} f(\vec{g}, t)} \cdot Z_{\vec{g}}
$$

where $Z_{\vec{g}} \stackrel{i i d}{\sim} \operatorname{Gaussian}(0,1)$
\Rightarrow Taylor expand $f(\vec{g})=\frac{n(\vec{g})}{\sum_{\dot{g}^{\prime}} n\left(\overrightarrow{g^{\prime}}\right)}$:

$$
f(\vec{g}, t+\delta t)=f(\vec{g}, t)+\sqrt{\frac{f(\vec{g}) \delta t}{N_{e}}} Z_{\vec{g}}-f(\vec{g}) \sum_{\vec{g}^{\prime}} \sqrt{\frac{f\left(\vec{g}^{\prime}\right) \delta t}{N_{e}}} Z_{\vec{g}^{\prime}}
$$

depends on $\vec{Z}_{\vec{g}}$ @ other \vec{g}^{\prime} !
\Rightarrow correlations between $\delta f(\vec{g}) \propto \delta f\left(\vec{g}^{\prime}\right) \Rightarrow$ keeps $f(\vec{g}, t)$ normalized!

$$
\begin{aligned}
\sum_{\vec{g}} f(\vec{g}, t+\delta t) & =\sum_{\vec{g}} f(\vec{f})+\sum_{\vec{g}} \sqrt{\frac{f(\vec{g}) f}{N_{e}}} z_{\vec{g}}-\sum_{\vec{g}} f(\vec{g}) \sum_{\vec{g}^{\prime}} \sqrt{\frac{f\left(\vec{g}^{\prime}\right)}{N_{e}}} z_{\vec{g} \prime} \\
& =1 \Rightarrow \text { stays normalized © later times }
\end{aligned}
$$

(2) Mutations:
\Rightarrow easiest to start u/L=2:

\Rightarrow Key feature: can only mae by ~ 1 step 0 a time
\Rightarrow generalizing results from $L=1$ case, after 1 dilution:

$$
\begin{aligned}
n(1,0, t+\Delta t) \sim \operatorname{Poisson}\left(N_{0} f(1,0, t)\right. & +N_{0} \Delta t[\overbrace{\mu_{1} f(0,0, t)+v_{2} f(1, t)}^{\text {mutations into genotype }}] \\
& -N_{0} \Delta t(\underbrace{\mu_{2} f(1,0, t)+v_{1} f(1,0, t)}_{\text {motions at of genotype }}])
\end{aligned}
$$

\Rightarrow continuum limit (ie. Taylor expansions):

$$
\delta f(1,0)_{m \nu t}=\left[\mu_{1} f(0,0)+v_{2} f(1,1)-\mu_{2} f(1,0)-v_{1} f(1,0)\right] \delta t
$$

\Rightarrow larger L's are similar, but more work to write att...
\Rightarrow one way is:
mutations into genotype

$$
\begin{aligned}
{\left[\frac{\delta f(\vec{g})}{\delta t}\right]_{\text {mut }} \equiv } & \sum_{\substack{\text { neanct } \\
\text { neighbors } \\
\vec{g}^{\prime}}} \sum_{l=1}^{L}\left[\mu_{l} f\left(\vec{g}^{\prime}\right) g_{l}\left(1-g_{l}^{\prime}\right)+v_{l} f\left(\vec{g}^{\prime}\right)\left(1-g_{l}\right) g_{l}^{\prime}\right] \\
& -\sum_{l=1}^{\text {mutations out of genotype }}[\overbrace{\mu_{l} f(\vec{g})\left(1-g_{l}\right)+v_{l} f(\vec{g}) g_{l}}^{\text {mutations }}] \\
\left(\frac{\delta f(\vec{g})}{\delta t}\right)_{\text {mut }} \equiv & \sum_{\sum_{\vec{g}^{\prime}}}[\underbrace{M\left(\vec{g}^{\prime} \rightarrow \vec{g}\right)}_{2^{L} \times 2^{L}} f\left(\vec{g}^{\prime}\right)-\underbrace{M\left(\vec{g} \rightarrow \vec{g}^{\prime}\right.}) f(\vec{g})]
\end{aligned}
$$

Note: mutation matrix normalized s.t. $\sum_{\vec{g}}\left(\frac{\delta f(\vec{g})}{\delta t}\right)_{\text {mut }}=0$
\Rightarrow ensures that $\sum_{\vec{g}} f(\vec{g}, t+\delta t)=\sum_{\vec{g}} f\left(f 0_{0} t\right)+\sum_{\vec{g}}^{1} \delta f_{\text {mut }}{ }^{0}(\vec{g})=1$
(3) Selection (growth rate differences)

If grout rate of genotype \vec{g} is $\equiv r+X(\vec{g})$
\Rightarrow then after 1 cycle of growth:

$$
f(\vec{g}) \longrightarrow \frac{f(\vec{g}) e^{[r+x(\vec{g})] \Delta t}}{\sum_{\vec{g}^{\prime}} f\left(\vec{g}^{\prime}\right) e^{\left[r+x\left(\dot{g}^{\prime}\right)\right] \Delta t}}=\frac{f(\vec{g}) e^{x(\vec{g}) \Delta t}}{\sum_{\vec{g}^{\prime}} f\left(\vec{g}^{\prime}\right) e^{x\left(\vec{g}^{\prime}\right) \Delta t}}
$$

\Rightarrow if $X(\vec{g}) \Delta t \ll \mid$ (continuum limit) \Rightarrow Talylor expand:

$$
f(\vec{g}, t+f t) \approx f(\vec{g}, t)+[x(\vec{g})-\bar{X}(t)] f(\vec{g}, t) \delta t
$$

Where $\bar{X}(t) \equiv \sum_{\vec{g}} X(\vec{g}) f(\vec{g}, t)$ (population mean fires)

* note: not an ensemble avg! $\langle\bar{x}(t) f(\vec{g}, t)\rangle \neq\langle\bar{x}(t))\langle f(\vec{s}, t)\rangle$
$\underset{\text { normalized: }}{\Rightarrow \text { Stays }} \sum_{\vec{g}} f(\vec{g}, t+\delta t)=\sum f(\vec{s}, t)+\sum_{\vec{s}} x(\vec{s}) f(\vec{s}, t)-\sum_{j} f(\vec{j}) \sum x\left(\vec{j} \vec{j}^{\prime}\right) f\left(\overrightarrow{s^{\prime}}\right)=1$
$\Rightarrow 2$ new biological features that enter for $L \geqslant 2$:
(4) "Epistasis": properties of $\vec{g} \rightarrow X(\vec{g})$ map ("files landscape")
\Rightarrow easiest to motivate $w / L=2$ case (eeg. 2 gene deletions)

$$
\left.\begin{array}{l}
X(0,0) \equiv O \quad \text { (convention) } \\
X(1,0) \equiv S_{1} \\
X(0,1) \equiv S_{2}
\end{array}\right\} \begin{array}{r}
\text { could measure, eg. gene deletion screen } \\
\text { (HW2) }
\end{array}
$$

(how much deviation from additivity)

$$
\text { e.g. } \quad \begin{aligned}
& " \epsilon>0 " \Rightarrow \text { "positive epistasis" } \\
& \quad \epsilon<0 " \Rightarrow \text { "negative epistasis" }
\end{aligned} \Rightarrow \begin{gathered}
\text { "sign epistasis" } \\
\text { etc. etc. }
\end{gathered}
$$

Often easiest to express w/ picture:
fines,

\Rightarrow people often interested in scenarios like:

"finns valley crossing"
e.g. initiation of cancer contact btw At's in proteins \rightarrow (Problem 6 of HW 3)
\Rightarrow gets even more complicated for $L>2$:
$\frac{111111111}{\downarrow}$

$$
X(\vec{g}) \equiv \underbrace{\sum_{\substack{=1 \\ \text { eppstatic } \\ \text { part. }}}^{L} s_{l} g_{l}}_{\substack{\text { additive part. } \\ \text { ("capon colleding") }}}+\underbrace{\epsilon(\vec{g})}
$$

\Rightarrow can write as Taylor expansion aud WT:

$$
\epsilon(\vec{g})=\underbrace{\sum_{l^{=1}}^{L} \sum_{e^{\prime}=1}^{L} \epsilon_{l^{\prime}} g_{l} g_{l^{\prime}}}_{\text {"painu|se epistasis" }}+\underbrace{\sum_{l} \sum_{e^{\prime} e^{n}} \epsilon_{e^{\prime} l^{\prime \prime}} g_{l^{\prime} g^{\prime} g^{\prime \prime}}+\ldots}_{\text {"higher order epistasis" }} \ldots
$$

\Rightarrow hard to parametrize in geneal (active are of research!) \Rightarrow in practice, people often use:

Additive model ($L \gg \mid$)

$$
X(\vec{g}) \approx \sum_{l=1}^{L} s_{l} g_{l}
$$

Pictures (L~O(1))

\Rightarrow other new bit of biology for $L \geqslant 2$:
(5) Recombination (exchange of generic material between different individuals)

Many different mechanisms!
\Rightarrow but many share same basic behavior:
(1) Focal individual \& is chosen to undergo recombination

$$
\Rightarrow w / \text { praanhlity } e \text { per indwidal pergen }
$$ eg. mating vinus/phage uptake of DMM cellule r $D N A, d$

(2) Donor individual fa is chosen to donate portion of genome \Rightarrow probability $\sim 1 / N \Rightarrow f(\vec{g})$ for any indiudal of that genotype.
(3) Some piece of donor's DNA is integnted, into focal genome
\Rightarrow producing "recombimant"
\Rightarrow different mechanisms enter © this step:
(a) Reassortment (e.g. differnt chrmusiones, e.g. yent, hummer, neftuenza.)

(b) Crossover Recombination (e.g. w/in chromsmes in himans)

\Rightarrow often modeled $\sim \mid \sim 1$ crossover per recombination event
w/ location chosen uniformly across chromosome $\underset{\sim}{\square} \Rightarrow$
\Rightarrow in practice, "hot spots" a "cold spots" \Rightarrow "recombimalin
\Rightarrow effective recombination rates vary over many ordes-of-magnitude for different pairs of sites in same genome!

$$
\begin{aligned}
& \Rightarrow \text { e.g. in humans } \Rightarrow L_{\text {chron }} \sim 10^{8} \text { bp }(\times 23 \text { chromosomes) } \\
& \quad \Rightarrow P(\text { recomb }) \sim 100 \% \text { if opp. ends of same chrom (ordiff chroms) } \\
& \quad \Rightarrow P(\text { recomb }) \sim 10^{-8} \text { if neighboring bp }
\end{aligned}
$$

(C) "Honzzontal gene transfer (HGT)" / "gene conversion"
\Rightarrow lingo is a little controversial, but basic idea pretty simple:

main difference from crossover is that $\Delta l_{r}<L$, as opposed to $\Delta l_{r} \sim \theta(L)$
\Rightarrow also a mechanism for gaining + losing genes $\left(\frac{\text { "accessory }}{\text { genome" }}\right)$
foal
 often mediated by hemolyy ($=$) Similar to $P C R$...
donor
\Rightarrow active are of research!
\Rightarrow but in this class, will mostly focus on "core genome"
\Rightarrow simplest $H G T$ model:
$\Delta l_{r}=$ cost, location \sim uniform

So far: individual-based picture...
\Rightarrow can we translate to continuo limit?

$$
\left(\frac{\delta f(\vec{g})}{\delta t}\right)_{r c c}=? ? ?
$$

\Rightarrow easiest to start $w / L=2$ case $\Rightarrow \vec{g}=\left(g_{1}, g_{2}\right)$
\Rightarrow all mechanisms have same net effect:
$\Rightarrow \omega /$ rate R [function of $e, L, \Delta l_{r}, \ldots$ etc.]
focal $\left(g_{1 F}, g_{2 F}\right) \gg\left(g_{1 F}, g_{2 D}\right)<1$ recombinant chosen to $\left(\sim \frac{1}{N}\right)$ donor $\left(g_{10}, g_{20}\right)>\left(g_{10}, g_{2 F}\right) \longleftarrow$ replace focal individual $\left(\sim \frac{1}{2}\right)$
\Rightarrow total outflow from recombination: $-R f(\vec{g})$
\Rightarrow total inflow? $2^{2} \times 2^{2}=16$ possible focal/donor combos
case $1(\operatorname{of} 16):$

$$
\begin{aligned}
& F(1,1) \\
& D(0,0)
\end{aligned}>(1,0) \Rightarrow \text { rate } R f(1,1) f(0,0) \cdot \frac{1}{2}, ~ R f(1,1) f(0,0) \cdot \frac{1}{2} .
$$

case $2($ of 16$):$

$$
\begin{aligned}
& F(0,0) \\
& 0(1,1)
\end{aligned}>(0,1)
$$

same!

Case 3 (of 16):

$$
\begin{aligned}
& (1,1)>(1,0) \Rightarrow R f(1,1) f(1,0) \frac{1}{2} \\
& (1,0)>(1,1) \Rightarrow R f(1,1) f(1,0) \frac{1}{2}
\end{aligned}
$$

\Rightarrow after tabulating all 16 combinations (all 32 recombinants) can add them up to obtain:

$$
\begin{aligned}
& \left(\frac{\delta f(1,1)}{\delta t}\right)_{r e c}=R f(1,0) f(0,1)-R f(1,1) f(0,0) \\
& \left(\frac{\delta f(0,0)}{\delta t}\right)_{r e c}=R f(1,0) f(0,1)-R f(1,1) f(0,0) \\
& \left(\frac{\delta f(1,0)}{\delta t}\right)_{\mathrm{rec}}=\prod_{\text {same! }}=R(1,1) f(0,0)-R f(1,0) f(0,1) \\
& \left(\frac{\delta f(0,1)}{\delta t}\right)_{r e c}=\prod_{\text {same }} .
\end{aligned}
$$

\Rightarrow normalized so that $\sum_{\vec{g}} \delta f(\vec{g})_{r e c}=0$
\Rightarrow harder to write down explicitly for $L>2 \ldots$... but will have geneal form:
\Rightarrow unlike mutation, can crate genotypes far from \vec{g} !

Putting evoything together, geneal muttilocus model looks like:

$$
\begin{aligned}
& \frac{\partial f(\vec{g})}{\partial t}=[X(\vec{g})-\bar{x}(t)] f(\vec{g})+\sum_{\vec{g}^{\prime}} M\left(\vec{g}_{\vec{\prime}} \rightarrow \vec{g}\right) f\left(\overrightarrow{g^{\prime}}\right)-M(\vec{g} \rightarrow \vec{g}) f(\vec{g}) \\
& \text { selection (mentinear) } \\
& \text { mutation (linear, "lean") } \\
& \left.+e \sum_{g_{1},} T\left(\overrightarrow{g_{F},}, \vec{g}\right) f(\vec{g}) f()-\rho f(\vec{g}) \quad \begin{array}{c}
\text { combination } \\
\text { (naminerar, man-kal })
\end{array}\right) \\
& +\sqrt{\frac{f(\vec{g})}{N}} \eta(\bar{g})-f(\vec{g}) \sum_{\dot{g}^{\prime}} \sqrt{\frac{f\left(\bar{g}^{\prime}\right)}{N}} \eta\left(\vec{g}^{\prime}\right) \quad \begin{array}{c}
\text { genetic deft } \\
\text { (stachatic) }
\end{array}
\end{aligned}
$$

Problem: No exact solution for stationary dist'n, Pix, etc.

- even for $L=2$!
\Rightarrow What do we do instead?!? $\Rightarrow \begin{aligned} & \text { asymptotic } \\ & \text { approx's }\end{aligned}$

Question: Given parmuctes ("knobs") L,N,X($\vec{\jmath}), M, e, T$
\Rightarrow what are some limits where we might understand understand this SOE?

$$
\begin{aligned}
\frac{\partial f(g)}{\partial t}= & \sim(x-\bar{x})+\sim L^{k x} \\
& +\sim e+\sim \sim \\
& \sim \frac{z}{\sqrt{N}}
\end{aligned}
$$

(1) Obvious answer: $L=1 \Rightarrow$ cheating!
(2) in physics, might be primed to take $N \rightarrow \infty$ limit... ("mean field approx") since @ least noise goes away... \Rightarrow is this a good approx her?
\Rightarrow Recall for $L=1$ case, 2 different regimes when $t \rightarrow \infty$:
$f(t)$

Nu<<1
$-\langle f\rangle \Rightarrow$ mean field approx is bad!
$f(t)$

time +

$N_{\mu \gg 1}$
\Rightarrow man field apposes good!
key feature: large \# of individuals in both genotypes © same time \Rightarrow so fluctuations ar shall.
\Rightarrow e.g. for $L=2$, might be ok \Rightarrow but for $L \gg 1 \Rightarrow 2^{L} \geqslant N$! e.g. $L \sim 1000 \mathrm{hp} \Rightarrow 2^{L} \sim 10^{300}$!
\Rightarrow large L will always look like (@ least in some dimensions)

\Rightarrow noise always relevant!

Need to look for other appaximations of SDE...

$$
\begin{aligned}
\frac{\partial f(\vec{g})}{\partial t}= & \sim(x-\bar{x})+\sim L^{* N} \\
& +\sim e+\sim \sim \frac{z}{\sqrt{N}}
\end{aligned}
$$

Let's revisit our first idea ($L=1$)
\Rightarrow even if $L \geqslant 1$, if behavior "looks like" $L=1$ case, \Rightarrow can use what we alrenely know...
(3) Successive mutations regime (i.e. treat mutation as small comection)
\Rightarrow what if mutation makes are low enough that only I or 2 genotypes are present © a time?

