
Chapter �

Dynamics of linear
branching processes

The previous chapter showed that some of the most interesting dynamics of a
new mutation occur while it is still at a low frequency in the population (f ⌧

1). In this limit, the single-locus model in Eq. (�.�) reduces to the linear SDE,
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also known as a linear branching process.� The reasons for this linear behavior
can be motivated by revisiting the microscopic Moran model from Chapter �.
When f ⌧ 1, most competitions involving themutant occur against awildtype
individual, simply because the number of such pairs (f · 1) is much larger than
the number of mutant-mutant pairs (f · f ⌧ f · 1):

�Technically, it is a continuous-time, continuous-state branching process. Other versions exist that discretize
the time and/or frequency dimensions. You will analyze one such example in Problem X of HWY.
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This suggests that selection and genetic drift can be approximated by assuming
that the mutant is growing in an environment consisting solely of wildtype indi-
viduals. The descendants of any two mutant individuals must be independent
in such a scenario, and the only way that this can occur is if the selection and
drift terms in the SDE are linear functions of f(t).

The independence assumption will clearly break down when the mutant
reaches higher frequencies (e.g. ��%). For example, correlations between indi-
viduals are eventually critical for ensuring that the mutant frequency cannot ex-
ceed ���%. The linear model in Eq. (�.�), by contrast, allows the “frequency” to
diverge to in�nity. This unboundedness will not be an important feature for us
here — we will always make sure to switch back to the full model in Eq. (�.�)
long before the mutation reaches ��% frequency (see Section �.�).

When the independence assumption is satis�ed, the linear nature of Eq. (�.�)
is simple enough thatwewill be able to gain anearly complete picture of the tem-
poral dynamics of mutations, in addition to the long-time limits (e.g. �xation
probabilities and stationary distributions) that we explored Chapter �. Under-
standing these dynamicswill turn out to give us lots of useful intuition for think-
ing about evolutionary problems, and they will provide a natural starting point
whenwe go on to considermore complicated scenarios later in the course. These
temporal dynamics are also increasingly relevant for analyzing longitudinal data
(e.g. ancient DNA, genomic surveillance of pathogens, laboratory evolution ex-
periments, etc.), so a detailed understanding of this casewill have useful practical
bene�ts as well.

���



�.� Dynamics of the mean and variance

For simplicity, we will �rst consider the case with no mutations (µ = ⌫ = 0),
where Eq. (�.�) reduces to
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Since the selection term is now a linear function of f(t), the moment equations
no longer su�er from the “moment hell” that plagued our original model in
Chapter �. The mean frequency now satis�es the deterministic dynamics,

@hf(t)i

@t
= shf(t)i , (�.�)

whose solution is a simple exponential growth function,

hf(t)i = f0e
st
. (�.�)

Similar results can be obtained for higher moments as well. Repeating the steps
in Chapter �, one can show that the second moment now satis�es,

hf(t)2i

@t
= 2shf(t)2i +
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N
(�.�)

Since the mean is given by Eq. (�.�), we can integrate this linear ODE to obtain

hf(t)2i = f
2
0 e

2st +
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The �rst term corresponds to the deterministic expectation, hf(t)2i ⇡ hf(t)i2,
while the second term is a new contribution due to genetic drift. It will be useful
to express this result in terms of the coe�cient of variation (CV),
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The coe�cient of variation is useful for visualizing the spread of a distribution in
log space (i.e. howuncertain arewe at anorder-of-magnitude level). For example,
for a “Case �” distribution with x = hxi ± �, we have

log x = log (hxi ± �) ⇡ loghxi ± cV (�.�)

when cV ⌧ 1. When the coe�cient of variation starts to exceed one, the average
becomes a poor approximation for actual value of the mutation frequency.

The coe�cient of variation in Eq. (�.�) starts out with cV (0) ⇡ 0, since we
have assumed that themutation begins at a �xed initial frequency. The behavior
at later times strongly depends on the relative values ofN , s, and f0:

Case �. For a positively selected mutation (s > 0), the coe�cient of variation is
bounded by its long-term value,

c
2
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1

Nsf0
(�.�)

Thus, if the mutation starts out in the selection-dominated region of frequency
space (f0 � 1/2Ns), then coe�cient of variation will remain small at all later
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times [cV (t) ⌧ 1]. This implies that the frequency of the mutation will be
well-approximated by its average value, hf(t)i = f0e

st (i.e. the distribution will
be of the “Case �” form from Chapter �). These results are consistent with our
�xation probability calculation from Chapter �, which showed that bene�cial
mutations are guaranteed to �x when f0 � 1/2Ns.

Case �. In contrast, when abene�cialmutation starts out in the drift-dominated
regionof frequency space (f0 ⌧ 1/2Ns), its coe�cient of variationwill initially
be very small [cV (t) ⌧ 1], but it will eventually reach a pointwhere cV (t) � 1.
Similar behavior will occur for neutral or deleterious mutations. The location
of this transition can be de�ned by the critical time t⇤ where cV (t⇤) ⇡ 1.

Solving for t⇤ yields

t
⇤
⇡

8
><

>:

Nf0 if f0 ⌧ 1/N |s|,
1
|s|
log(N |s|f0) if s < 0 and f0 � 1/N |s|,

1 if s > 0 and f0 � 1/Ns.
(�.��)

When t ⌧ t
⇤, the coe�cient of variation is very small [cV (t) ⌧ 1], and

the frequency of the mutation can be well-approximated by its average value,
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hf(t)i = f0e
st. In contrast, when t & t

⇤, the distribution of f(t) will become
extremely broad, and will approach a “Case �” form whose properties we will
derive below.

�.� Solving for the full distribution

One of the most useful features of the branching process model in Eq. (�.�) is
that it allows us to solve for the full distribution of f(t). We could in principle
do this by solving the Fokker-Planck equation,
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but the second derivative on the right-hand side makes this a di�cult task (see
the Appendix of Chapter �). In this case, it will be much easier to work with the
moment generating function of f(t):

H(z, t) ⌘ he
�zf(t)

i ⌘

Z
e
�zf

p(f, t) df , (�.��)

which is governed by an analogous PDE,
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subject to the initial condition H(z, 0) = e
�zf0 . The main di�erence from

our original model in Eq. (�.��) is that the branching process version contains
only a single z derivative. PDEs of this form can be solved using a technique
known as themethod of characteristics, which is a generalization of the trick
that we used to solve for the �xation probability inChapter �. The details of this
derivation are presented in the Appendix at the end of the chapter. For now, we
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will simply quote the �nal solution,

H(z, t) = exp


�zf0e

st

1 + z

2Ns
(est � 1)

�
. (�.��)

Formally, it is possible to invert this expression toobtain the correspondingprob-
ability distributionp(f, t). However, the details are somewhat complicated, and
the resulting expressions canbe di�cult to interpret in the general case.� Instead,
we will see that one can actually learn a lot about p(f, t) by examining the gen-
erating functionH(z, t) directly.

For example, usingour results for themean andvariance above,we can rewrite
H(z, t) in the convenient form,

H(z, t) = exp

"
�zhf(t)i

1 + zhf(t)i ·
c
2
V (t)
2

#
(�.��)

By comparing this result to the generating function for a Gaussian random vari-
able (Chapter �),
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2
hxi

2
·
c2V
2 (�.��)

we can see that f(t) is not normally distributed in general, but becomes approxi-
mately normally distributed in the limit that cV (t) ⌧ 1. Our results in Eq. (�.�)
show that this will be a good approximation at short times, but it will eventually
break down for t & t

⇤ in Eq. (�.��), when cV (t) & 1. What can we say about
the distribution of f(t) in these cases?

Extinction and survival probabilities

When the variation in f(t) is as large as its mean [cV (t) & 1], we must consider
the possibility that the mutant has gone extinct [f(t) = 0]. The probability of

�The details of this inversion are presented in an appendix at the end of this chapter.
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this event can also be easily extracted from the generating function in Eq. (�.��).
Recalling the de�nition of the generating function,

H(z, t) ⌘

Z
e
�zf

p(f, t) df (�.��)

we can see that the exponential factor acts like a crude version of a step function,
approaching a uniform value for f ⌧ 1/z, and excluding contributions from
frequencies with f � 1/z. In the extreme limit where z ! 1, the only values
of f that will contribute to the generating function integral are those with f =
0; all of the nonzero frequencies will have e�zf

! 0. This implies that

lim
z!1

H(z, t) = 1 · pext(t) + 0 · [1 � pext(t)] = pext(t) (�.��)

where pext(t) is the time-dependent extinction probability of the mutation
(i.e., the probability that it has gone extinct by time t). Using our expression for
H(z, t) in Eq. (�.��), we �nd that

pext(t) = exp


�2Nsf0

est � 1

�
= exp


�2

c
2
V
(t)

�
. (�.��)

We can also de�ne a corresponding survival probability

ps(t) = 1 � pext(t) = 1 � exp


�2Nsf0

1 � e�st

�
, (�.��)

which denotes the probability that the mutant is still alive at time t.
These expressions show that the extinction and survival probabilities are in-

timately connected to the coe�cient of variation in Eq. (�.�). At early times
(t ⌧ t

⇤), the coe�cient of variation is very small [cV (t) ⌧ 1], so there is a
negligible chance of extinction (i.e., the survival probability is close to ���%).
However, once cV (t) & 1, there is a decent chance that the mutant has now
gone extinct. This implies that the crossover time t⇤ in Eq. (�.��) can also be
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interpreted as a characteristic extinction time— i.e. the time at which the sur-
vival probability starts to drop below 100%. For a bene�cialmutation that starts
out in the selection-dominated regime (f0 � 1/2Ns), the survival probability
in Eq. (�.��) remains close to 100% at all later times. In all other cases, the sur-
vival probability will eventually become very small [ps(t) ⌧ 1], and there is a
large chance that the mutant has gone extinct.

Conditioning on non-extinction

Our results above suggest that when t & t
⇤, the distribution of f(t) will ap-

proach a “Case �” form that contains a mixture of two di�erent types of muta-
tion trajectories: (i) extinct paths, which have f(t) = 0, and (ii) non-extinct
paths where f(t) > 0.

We can formalize this idea by writing p(f, t) as a mixture of two components,

p(f, t) = [1 � ps(t)] �(f)| {z }
extinct paths

+ ps(t) · p(f, t|f > 0)| {z }
non-extinct paths

(�.��)

where p(f, t|f > 0) denotes the conditional distribution of f(t), given that
it has survived for a time t. Since ps(t) is known, this conditional distribution
contains all the non-trivial features of the full distribution p(f, t). What can we
learn about the frequencies of these surviving lineages?
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One of the simplest things we can do is look at the mean of p(f, t|f > 0).
Multiplying both sides of Eq. (�.��) by f and integrating, we �nd that

hf(t)i = [1 � ps(t)] · 0| {z }
extinct paths

+ hf(t)|f > 0i · ps(t)| {z }
non-extinct paths

, (�.��)

where hf(t)|f > 0i denotes the conditional average of f(t), given that it
is alive at time t. We can rearrange this equation to obtain a formula for the
conditional mean as a function of hf(t)i and ps(t):

hf(t)|f > 0i =
hf(t)i

ps(t)
⇡

(
f0e

st if t ⌧ t
⇤,

e
st

�1
2Ns

if t � t
⇤.

(�.��)

At short times (t ⌧ t
⇤), the survival probability remains close to ���%, and

the conditional mean stays close to the unconditional average, hf(t)i = f0e
st.

In contrast, when the time starts to exceed the characteristic extinction time
(t � t

⇤), the average frequency of a surviving lineage becomesmuch larger than
hf(t)i, since a large fraction of the lineages will have gone extinct.

In this latter case, the conditional mean follows a qualitatively di�erent tra-
jectory than the deterministic expectation f0e

st. In particular, the average fre-
quency of a surviving lineage becomes independent of f0. This initial frequency
plays a crucial role in determining the survival probability of the mutation. But
provided that it survives, its average frequency will lose all memory of where
it started. We can gain some additional insight into this behavior by splitting
Eq. (�.��) into three di�erent cases depending on the relative values of s and t:

hf(t)|f > 0i
t�t

⇤
�!

8
><

>:

1
2Ns

· e
st if s > 0 and t � 1/s,

t

2N
if t ⌧ 1/|s|,

1
2N |s|

if s < 0 and t � 1/|s|.
(�.��)

These three cases show that

�. Survivingbene�cialmutations (eventually) growexponentiallywith time,
butwith a di�erent pre-factor compared to the deterministic expectation:
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�. Bene�cial and deleteriousmutations look like neutral mutations on short
timescales (t⇤ ⌧ t ⌧ 1/|s|). The frequencies of these mutations grow
linearly with time, as opposed to the constant value we would expect in
the absence of noise:

�. At longer times, deleterious mutations eventually saturate at a constant
value, rather than declining exponentially with time.

The corresponding survival probabilities in each of these three cases are given by

ps(t)
t�t

⇤
�!

8
><

>:

2Nsf0 if s > 0 and t � 1/s,
2Nf0/t if t ⌧ 1/|s|,
2N |s|f0e

�st if s < 0 and t � 1/|s|.
(�.��)

We can see that in each case, the survival probability and conditional mean are
perfectly set up so that their product is equal to theunconditioned average hf(t)i.
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We can use a similar argument to calculate the full conditional distribution
p(f, t|f > 0). This is easiest to do by going through the generating function
H(z, t). Multiplying both sides of Eq. (�.��) by e�zf and integrating, we �nd
that

H(z, t) = [1 � ps(t)] · e
�z·0

| {z }
extinct paths

+ ps(t) · H(z, t|f > 0)| {z }
surviving paths

, (�.��)

where we have de�ned the conditional generating function,

H(z, t|f > 0) =

Z
e
�zf

p(f, t|f > 0) df . (�.��)

We can rearrange this equation to obtain a formula forH(z, t|f > 0):

H(z, t|f > 0) =
H(z, t) � [1 � ps(t)]

ps(t)
=

e

�zhf(t)i
1+zhf(t)ic2

V
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2
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V

(t)
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2
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We can simplify this expression by noting that the argument of the �rst expo-
nential is maximized when z = 1, where H(z, t) = e

�2/c
2
V (t). Thus, in the

long time limit (t � t
⇤) where cV (t) � 1, we can Taylor expand each of the

exponential terms in Eq. (�.��) to obtain

H(z, t|f > 0)
t�t⇤
�!

✓
1 �

zhfi

1+zhfi
c2
V
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◆
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⇣
1 �

2
c2V

⌘

1 �

⇣
1 �

2
c2V

⌘ =
1

1 + z · hf(t)|f > 0i
, (�.��)

where we have used the fact that hf(t)|f > 0i ⇡ 2hf(t)i/c2
V
(t). By the

“method of Wikipedia” , we can see that this expression matches the gener-
ating function for an exponential distribution with a mean equal to the condi-
tional average hf(t)|f > 0i:

p(f, t|f > 0) ⇡
e
�f/hf(t)|f>0i

hf(t)|f > 0i
, (�.��)
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The exponential distributionoccupies an intermediate zonebetween the “Case �”
and “Case �” distributions in Chapter �. While it may look broadly distributed
when we plot it on a linear scale, if we plot it in terms of log f , we see that most
of its probability is concentrated within one order of magnitude of the mean.

We can therefore think of the exponential distribution as a “Goldilocks case”
where the mean is a reasonable summary of the typical behavior [i.e. one that is
accurate up to anO(1) pre-factor].

Putting everything together, we can conclude that the temporal dynamics
of p(f, t) can be divided into two characteristic regimes:

• Case �: At short times (t ⌧ t
⇤), the distribution of f(t) will be strongly

peaked around its deterministic expectation hf(t)i = f0e
st, with Gaus-

sian �uctuations of size±hf(t)i · cV (t).
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For amutation that starts at a frequency f0 ⌧ 1/2N |s|, this initial phase
will last for t⇤ ⇠ Nf0 generations, and the mean and variance are given
by f0 ± f0t/N .

• Case �: At longer times (t � t
⇤), the distribution of f(t)will split into a

bimodal shape, with a large fraction of mutations going extinct (f = 0).
The surviving mutations will follow an exponential distribution, whose
average size marches toward higher frequencies according to the condi-
tional mean hf(t)|f > 0i in Eq. (�.��).

Newmutations always start out in Case � (since t⇤ ⇡ 1), which implies that:

Transient distribution of a new mutation (f ⌧ 1)

For a newmutation with an initial frequency f0 = 1/N , the frequencies
at later times follow the mixture distribution,

p(f, t) = [1 � ps(t)] · �(f) +
ps(t)

fs(t)
e
�t/fs(t) , (�.��)

where fs(t) = (est
� 1)/2Ns and ps(t) = 2s/(1 � e

�st).
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This leads to several interesting conclusions:

�. At early times (t ⌧ 1/|s|), the distribution of f(t) is indistinguishable
from that of a neutral mutation, even when N |s| � 1. This shows
that our previous deduction from the �xation probability in Chapter �
extends to the full dynamics of f(t) as well.

�. In this initial phase (t ⌧ 1/|s|), the typical frequencies of the surviving
mutations grow linearly in time,

hf(t)|f > 0i ⇡
t

2N
(�.��)

Since the frequencies are exponentially distributed, this means that we
would need towait for t ⇠ Nf generations to have an appreciable chance
of observing a mutation with f(t) ⇠ f when t ⌧ 1/|s|.

�. For a bene�cial mutation, the linear growth in Eq. (�.��) is actually faster
than the deterministic expectation, f0e

st. If we could measure its fre-
quency trajectory in this early stage, its apparent �tness bene�t [i.e. the
slope of log f(t)] would appear to be much larger than s:
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This linear growth is even more counterintuitive for neutral or deleteri-
ous mutations, since it implies that the average frequency of a surviving
mutation tends to increase with time—even though the overall average is
�at or declining. This paradoxical behavior can be reconciled by remem-
bering that vastmajority of themutations have gone extinct by this point.
By restricting our attention to the survivingmutations, we are biasing our
observations toward the lucky trajectories that managed to avoid extinc-
tion by drifting to anomalously large frequencies.

�. Once t � 1/|s|, natural selection starts to exert its e�ect. Deleterious
mutations are prevented from rising much higher than 1/2N |s|, while
bene�cial mutations start to grow as 1

2Ns
e
st, with an overall prefactor set

by the exponential distribution.

We can gain some additional insight by examining the whole ensemble of ran-
dom paths, p[f(t1), f(t2), . . . , f(tn)], rather than just the frequency at the �-
nal timepoint. We can do this by recursively applying the results above. This
yields an intuitive picture for the trajectory of a mutant lineage that starts at a
frequency f0 ⌧ 1/2N |s|:
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Themutationwill initially behave like anordinary randomwalk, with small�uc-
tuations around f0. After a time of order t⇤ ⇠ Nf0, the mutation will forget its
initial frequency and begin to grow linearly as f(t) ⇡ t/2N , while an increas-
ing fractionwill drift to extinction. There will beO(1) �uctuations around this
mean, but these will be forgotten after another Nf(t) generations. In each it-
eration, some of the current surviving paths will have a chance of drifting to
extinction.

After a time of order⇠ 1/|s|, a typical survivingmutationwill have reached
a frequency of order⇠ 1/2N |s|. Deleterious mutations will get “stuck” at this
point, while an increasing fractionwill continue to drift to extinction. Bene�cial
mutations, on the other hand, will begin to grow deterministically at rate est. In
this case, we say that the bene�cialmutation has “established” , since itwill have
a negligible probability of going extinct. The total probability that it reaches this
point (2Nsf0) is sometimes known as the establishment probability.

Further �uctuations in the frequency will be small from this point forward,
so most of the variation in f(t) will come from the last round of �uctuations
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that occurred when the frequency was close to ⇠ 1/Ns. We can formalize this
idea by introducing a new random variable ⌫(t) that factors out the expected
time-dependence of f(t):

f(t) ⌘
⌫(t)

2Ns
e
st (�.��)

From the de�nition of the generating function, we have

H⌫(z, t) = he
�z·⌫(t)

i = he
�z·2Nse

�st
f(t)

i = Hf(2Nse
�st

· z, t) (�.��)

When t � 1/s � t
⇤, the conditional distribution of ⌫ reduces to

H⌫(z, t|f > 0) ⇡
1

1 + 2Nsz
=) ⌫ ⇠ Exponential(1) (�.��)

This suggests that the randomness in the frequency trajectory when f(t) �

1/2Ns can be captured by a singleO(1) pre-factor,

f(t) =
⌫

2Ns
e
st
. (�.��)

which is “frozen in” once t � 1/s.

�.� Asymptotic matching at higher frequencies

An established bene�cial mutation cannot grow exponentially forever. At some
point, it will reach a large enough size that f(t) will no longer be small com-
pared to one, and our linear branching process approximation will break down.
This will require us to switch back to the full single-locus di�usion model from
Chapter �. Fortunately, we have already shown that genetic drift will be negli-
gible at these higher frequencies [since f(t) � 1/2Ns], so we can replace the
full model with the deterministic version,

@f

@t
= sf(1 � f) . (�.��)
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We can implement the “hando�” between this model and the linear branching
process in Eq. (�.�) using a technique known asasymptotic matching. The ba-
sic idea applies anytime that we have two di�erent approximations that overlap
in a smaller region of parameter space. By matching the two approximations in
the region where they are both valid, we can �nd a “global” approximation that
is valid across the entire range.

In this case, the overlap region is the part of frequency space where 1
2Ns

⌧

f ⌧ 1. The upper condition (f ⌧ 1) ensures that the linear branching process
is a good approximation, while the lower condition (f � 1/2Ns) ensures that
the deterministic approximation in Eq. (�.��) is also valid.

Having identi�ed the relevant overlap region, we can implement our asymptotic
matching procedure using the following steps:

• Step �. Tomake things easier, wewill�rst convert the overlap region from
the y-axis (frequency) to the x-axis (time). We can do this by choosing an
intermediate time ti such that 1

2Ns
⌧ f(ti) ⌧ 1. When these conditions

are satis�ed, our results above imply that

f(ti) =

(
⌫

2Ns
e
sti w/ prob 2Nsf0,

0 else,
(�.��)
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where ⌫ is an exponential random variable with mean one. The bottom
case is easy to extrapolate to later times, since the mutation must remain
extinct for all t. This means that we only need to consider the established
case. In this case, Eq. (�.��) shows that our assumptions about f(ti) will
be self-consistent if

1

s
⌧ ti ⌧

1

s
log(Ns) . (�.��)

When Ns � 1, there are (in principle�) many possible ti values where
this will be true. Let’s choose one of them.

• Step �.We can then use this intermediate timepoint as the starting point
for the deterministic model in Eq. (�.��). This yields the frequency at any
later timepoint:

f(t) =
f(ti)es(t�ti)

1 � f(ti) + f(ti)es(t�ti)
⇡

f(ti)es(t�ti)

1 + f(ti)es(t�ti)
(�.��)

where we have assumed that f(ti) ⌧ 1.

• Step �.We can then substitute our expression for f(ti) into Eq. (�.��) to
obtain a “global” approximation,

f(t) =

�
⌫

2Ns
e
sti
�
e
s(t�ti)

1 +
�

⌫

2Ns
esti

�
es(t�ti)

=
⌫

2Ns
e
st

1 + ⌫

2Ns
est

, (�.��)

that is valid for t � 1/s. Note that the intermediate time ti has dropped
out of our �nal answer. This is a good thing, since our choice of ti was
completely arbitrary, and any downstreampredictions should not depend
on the precise value that we chose.

�This is the “asymptotic” part of asymptotic matching – it requires us to assume that Ns ! 1. In practice,
since log(Ns) is a slowly growing function of Ns, the di�erence between 1/s and log(Ns)/s is never that big.
Fortunately, like many of other asymptotic approximations we discussed in Chapter �, we will see that the asymp-
totic matching approximation remains relatively accurate in practice, even for moderate values of log(Ns).
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We can use our global approximation in Eq. (�.��) to calculate an interesting
biological quantity: how long does it take for a brand newmutation to take over
the population and �x? This is often known as the�xation time. We can break
this question down into two parts: (i) how long does it take a mutation to go
from f0 = 1/N to f = 50%? and (ii) how long does it take to go from ��% to
���%?

We can answer the �rst question using our expression in Eq. (�.��). Setting
f(t) = 1/2 and solving for t yields:

T1/2 =
1

s
log

✓
2Ns

⌫

◆
=

1

s
log(2Ns) +

1

s
log

✓
1

⌫

◆
(�.��)

The second half of the trajectory is mirror symmetric with the �rst if we reverse
the direction of time (t ! �t) and focus on thewildtype fraction (f ! 1�f ).
The total �xation time is given by

Tfix =
2

s
log(2Ns) +

1

s
log

✓
1

⌫1

◆
+

1

2
log

✓
1

⌫2

◆
(�.��)

SinceNs � 1, the �rst term ismuch larger than the other two, which yields the
leading order approximation,

���



Fixation time of a bene�cial mutation (Ns � 1)

Tfix ⇡
2

s
log(2Ns) . (�.��)

It is easy to imagine that evolutionmightbe limitedby the time it takes to�nd the
right mutation. Equation (�.��) shows that there is also a fundamental “speed
limit” on the time it takes for this newly produced mutation to take over the
population and �x.

In large populations, the total�xation time can bemuch larger than the time
it takes for a mutation to go from 10% ! 90%, or even 1% ! 99%. Our
decomposition shows that most of this time elapses in the deterministic phase
of the mutation’s lifetime [f(t) & 1/2Ns], while it is still at a low frequency
in the population [f(t) ⌧ 1]. You will have the chance to work through some
concrete examples in Problem � ofHomework �. This speed limit on the �xation
timeof anewmutationwill be very importantwhenwe consider longer genomes
later in the course.

�.� Heuristic picture

Because the linear branchingprocess spansboth thedrift-dominated and selection-
dominated parts of frequency space, it is able to quantitatively capture the com-
plex transition between stochastic and deterministic growth. This transition is
critical for understanding how new mutations take over a population. At the
same time, we saw that obtaining these analytical results required some com-
plex mathematical machinery (e.g., moment equations, generating functions,
asymptotic matching) which can obscure some of the underlying physical intu-
ition.

In this section, we will introduce an alternative heuristic approach for de-
riving many of the exact results we have obtained so far. These heuristic calcula-
tions may seem sloppy or arbitrary at �rst, but they are more precise than they

���



look: with a bit of care, wewill see that they can be done in away that keeps track
of the approximations in a controlled manner, while highlighting the key phys-
ical concepts. This can sometimes enable progress in more complicated settings
where exact results are not available — you’ll have a chance to work through a
concrete example involving “recessive” mutations (relevant for genetic diseases
in humans) in Problem � of Homework �.

Warmup: Gaussian RandomWalk

Wewill start by revisiting the simple Gaussian random walk from Chapter �,

@x

@t
= µ+

p

�2 · ⌘(t) , (�.��)

which has the exact solution,

x(t) = x(0) + µt+
p

�2t · Zt , (�.��)

that is valid for any time interval t. In the spirit of our dominant balance ap-
proach from Chapter �, we can then ask:

Do the stochastic or deterministic terms provide the dominant
contribution to�x = x(t)�x(0) over a given time interval?

This is secretly a question about timescales. Since the stochastic component is
proportional to

p
t, it will always dominate over the deterministic contribution

(µt) when t ! 0. For the same reason, the deterministic contribution will al-
ways dominate over the stochastic term when t ! 1.
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This implies that there will be a crossover time t⇤ where the two contributions
will have equal magnitude:

µt
⇤ =

p

�2t⇤ =) t
⇤ =

�
2

µ
(�.��)

When t � t
⇤, we can think about x(t) as being mostly deterministic (i.e.,

x(t) ⇡ µt plus a small correction). Conversely, when t ⌧ t
⇤, we can approxi-

mate x(t) as being mostly stochastic (x(t) ⇡ �Zt plus a small correction).

Back to evolution

We can now return to our evolutionary model,

@f

@t
= sf(t)| {z }

selection
(deterministic)

+

r
f(t)

N
⌘(t)

| {z }
genetic drift
(stochastic)

(�.��)

and ask the same question:

Do the deterministic (i.e. selection) or stochastic (genetic drift)
terms provide the dominant contribution to f(t) over a �nite
time interval t?
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This question is more di�cult to answer than it was for the simple randomwalk
example above, since the drift and selection terms now depend on f(t) (which
itself depends on the drift and selection terms at earlier timepoints, and so on).
In the previous sections, we overcame this problem above by developing meth-
ods for “integrating” SDEs like Eq. (�.��), e.g. using the moment generating
function. This was hard! And it only provided analytical results in simple cases
like the linear branching process.

Heuristic calculations are a way to perform this same integration task ap-
proximately (i.e., “poor man’s integration”). The basic idea is to start from
the in�nitesimal version ofEq. (�.��) and ask how farwe can get by extrapolating
it to a non-in�nitesimal time interval�t:

�f ⇡ sf(0) · �t+

r
f(0)�t

N
· Z0 , (�.��)

This approach can’t work forever, since f(0) will eventually be a poor approx-
imation for f(t). However, if we restrict our attention to time intervals where
�f is of the same order-of-magnitude as f(0), then the drift and selection terms
in Eq. (�.��) will only be o� by an O(1) factor. This implies that the value of
�f estimated fromEq. (�.��) will only be o� by anO(1) factor as well. Thus, if
we’re willing to work to “logarithmic precision” —i.e. up to anO(1) prefac-
tor in front of various quantities— thenEq. (�.��)will be a good approximation
to our original model up to the point where

|�f | = cf , (�.��)

for some O(1) constant c. Since the exact value of c is not that important, we
will often denote this using the “of-order” notation,

“|�f | ⇠ f” (�.��)

which is shorthand for Eq. (�.��).
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Using this notation, we can de�ne the “reset time” �t
⇤ to be the point

where our short-time approximation in Eq. (�.��) �rst reaches |�f | ⇠ f(0).
At this point, we can repeat the whole process starting from the new initial con-
dition, f(�t) = f(0) + �f , and so on. This yields an iterative method for
building up solutions for f(t) when t is longer than a single�t

⇤. It is concep-
tually very similar to Euler’s method for numerically integrating di�erential
equations — the main di�erence is that we are now trying to use it to obtain
approximate analytical solutions instead.

This new framework lets us recast our original question in a more precise
manner:

Dodeterministic forces (selection) or stochastic forces (drift) pro-
vide the dominant contribution to the change in frequency,

�f = sf · �t| {z }
�fsel

+

r
f�t

N
· Z

| {z }
�fdrift

, (�.��)

during a characteristic reset time�t
⇤, where�f ⇠ f ?

We can answer this question using the dominant balance approach fromChap-
ter �, by asking when each of the two possibilities are self-consistent:

Case �. If deterministic forces are dominant (�fsel � �fdrift), then the reset
time is de�ned by

f ⇠ |�fsel| ⇠ |s|f�t
⇤
, (�.��)

or

�t
⇤
⇠ Tsel ⌘

1

|s|
, (�.��)
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where we have de�ned a characteristic selection timescale Tsel ⌘ 1/s. Recall
that is shorthand for the statement that�t

⇤ = c1/|s| for some O(1) constant
c1. The precise value of c1 will not be that important if we are working to loga-
rithmic precision in s and t.

We can now ask when this assumption is self-consistent. Over the timescale
�t

⇤
⇠ 1/|s|, the corresponding contribution from genetic drift is given by

|�fdrift| ⇠

r
f�t⇤

N
⇠

s
f

N |s|
(�.��)

This will be small compared to |�fsel| ⇠ f if

f �
1

Ns
(�.��)

This is equivalent to the selection-dominated regime we derived in the previous
section [up to anO(1) constant].

Wepreviously showed that thedynamics in this regime arewell-approximated
by the deterministic version of Eq. (�.��), which yields the exponential growth
law f(t) ⇡ f0e

st. We can also obtain this result using the heuristic approach
described here. After a single reset time (�t

⇤
⇠ 1/s), the new initial frequency

is given by

f(�t
⇤) = f(0) +�f ⇡ (1 + c1)f(0) , (�.��)

where c1 is anO(1) constant. After k such reset times, we obtain

f(t) ⇡ f(0) (1 + c1)
k = f(0)ec2st , (�.��)

where we have used the total time t = k · �t
⇤
⇠k/s to substitute for k. Thus,

up to anO(1) constant in front of s, we can recover the exponential growth law
above.
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Case �. If stochastic forces are dominant (|�fdrift| � |�fsel|), then the reset
time is instead de�ned by

f ⇠ |�fdrift| ⇠

r
f�t⇤

N
. (�.��)

which is equivalent to the characteristic drift timescale,

�t
⇤
⇠ Tdrift ⌘ Nf . (�.��)

During this time, the contribution from selection is given by

|�fsel| ⇠ sf · �t
⇤
⇠ Nsf

2 (�.��)

which will be small compared to |�fdrift| ⇠ f if

f ⌧
1

Ns
. (�.��)

This is equivalent to the drift-dominated regime we iden��ed above.

As above, we could use our exact results from Section �.� to predict the dy-
namics of f(t) in this regime. We can also understand this behavior heuristi-
cally bymodifying our iterative calculation in Eq. (�.��). After a single reset time
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(�t
⇤

⇠ Nf ), the mutant will have had an appreciable chance of going extinct
(since |�fdrift| ⇠ f ). Let’s call this probability pext ⇡ e

�c1 , though the precise
value of c will not be that important. If the mutant didn’t go extinct, it must
have drifted to a slightly higher frequency

f(�t
⇤) ⇠

f

1 � e�c1
(�.��)

so that

hf(�t
⇤)i = 0 · e

�c1| {z }
extinct paths

+

✓
f

1 � e�c1

◆
·
�
1 � e

�c1
�

| {z }
nonextinct paths

= f (�.��)

After k successive reset times, the probability that the mutation is still alive is

ps(k) ⇡
�
1 � e

�c1
�k

= e
�c2·k (�.��a)

and its typical size is

f(k) ⇡ f0

✓
1

1 � e�c1

◆k

= f0e
c2·k (�.��b)

where c2 = log (1 � e
�c1)�1 is anotherO(1) constant.
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The exponential dependence onk is similar towhatwe observed in the selection-
dominated case above. Themaindi�erence is that in thedrift-dominated regime,
the reset timegets progressively longer in each iteration, since�t

⇤(k) ⇠ Nf(k).
The total time that elapses during k iterations is therefore given by

t(k) =
k�1X

j=0

Nf0e
c2·j ⇠ c3Nf(k) (�.��c)

where c3 = (1 � e
�c2·k)/(1 � e

�c2) is anotherO(1) constant.
This relationship between p(k), f(k), and t(k) can be summarized in two

di�erent ways. If we treat the total time t = t(k) as our input parameter, we
would say that:

Drift-dominated dynamics (time)

A mutation will survive for at least t generations with proba-
bility⇠ Nf0/t, and will reach a typical size⇠t/N .

Alternatively if we treat the �nal frequency f = f(k) as the input parameter,
we would say that

Drift-dominated dynamics (frequency)

With probability ⇠f0/f , a mutation will drift to size ⇠f ,
and will require⇠Nf generations to do so.

Patching everything together

These two regimes provide a simple picture for the dynamics of Eq. (�.��) when
the frequencies are either much larger or much smaller than the drift thresh-
old, f ⇤

⌘ 1/Ns. Our heuristic approach goes one step further, and assumes
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that the boundary between these two regimes is in�nitely sharp, so that we can
patch the solutions together at f ⇤. This is not exactly right—our analysis above
showed that there is a �nite crossover region [log f ⇤

± O(1)] where drift and
selection both play a role. However, the errors involved in making this assump-
tion will only introduce some additionalO(1) prefactors, and will therefore be
consistentwith the approximationswe have beenmaking so far. By patching the
drift-dominated and selection-dominated solutions together�, we can obtain a
simple picture for lifecycle of a new mutation:

• A new bene�cial mutation will start with an initial frequency f0=1/N .
With probability⇠f0/f

⇤
⇡s, its lineage will survive long enough to drift

to size f ⇤
⇠1/Ns, and will take⇠1/s generations to do so. At this point,

natural selection takes over, and the lineage will begin to grow exponen-
tially at rate s.

• Adeleteriousmutationwill behave similarly at�rst, andwill have a proba-
bility⇠ |s| of drifting to size f ⇤

⇠1/N |s|. After this point, natural selec-
tion will prevent the mutation from rising much higher than ⇠1/N |s|,

�This is reminiscent of the asymptotic matching procedure from Section �.�, but with a subtle and important
twist: asymptotic matching is performed at a point where both approximations are valid, while our patching argu-
ment is gluing together solutions at a point where neither approximation is fully accurate (even asymptotically).
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so it will continue to have anO(1) chance of drifting to extinction in each
successive reset time (�t

⇤
⇠ 1/|s|). The total probability of surviving for

t � 1/|s| generations therefore given by ps(t) ⇠ |s|e
�c·s·t.

• The trajectories of neutral mutations (and bene�cial or deleterious mu-
tations below the drift threshold) will look like “triangles” with a height
⇠t/N and a width of t, and a probability of occurrence⇠dt/t

2.

�.� Incorporating spontaneous mutations

So far, we have only considered cases where a mutation starts at a given initial
frequency, and then we try to predict where it ends up at some later time t. In
practice, we are often more interested in scenarios where there are no mutant
individuals to begin with (e.g. a lab evolution experiment starting from a single
ancestor strain), while mutation events randomly occur within the population
over time:
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Spontaneous mutations introduce two new complications:

�. The origination time of the mutation (t0) is now a random variable,
rather than a �xed number as we considered above.

�. Multiple distinctmutation events can contribute to themutant frequency
at some later time t.

We can model these e�ects by adding a mutation term� to our linear branching
process model,

@f

@t
= µ|{z}

mut’n

+ sf|{z}
selection

+

r
f

N
· ⌘(t)

| {z }
genetic drift

(�.��)

�In principle, we could add a back mutation term as well, but this is equivalent to shifting the selection coe�-
cient s ! s � ⌫.
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which can introduce new mutant individuals even when f(t) = 0. Alterna-
tively, we can also decompose the mutant frequency into a sum over individual
mutation events,

f(t) =
tX

t0=1

✓(t0)X

i=0

fi(t|t0) , (�.��a)

where ✓(t0) is a randomvariable representing the number of newmutations that
occur in generation t0,

✓(t0)
i.i.d.
⇠ Poisson(Nµ) , (�.��b)

and the fi(t|t0) are independent mutation-free branching processes,

@fi

@t
= sfi +

r
fi

N
· ⌘i(t) , (�.��c)

with the initial condition fi(t0) = 1/N . Both of these formulations will be
useful for our analysis below.

Since Eqs. (�.��) and (�.��) are fundamentally linear models, we can con-
tinue to use the method of characteristics to solve for the corresponding gener-
ation function,H(z, t). The details are listed in the Appendix at the end of this
chapter. Inverting this solution, we �nd that the total frequency f(t) follows a
Gamma distribution,

Dynamic mutation-selection-drift balance (f ⌧ 1)

If the population is initially composed of wildtype individuals, then the
frequency of the mutant at later times follows a Gamma distribution,

p(f, t) / f
↵�1

e
�f/fs(t) , (�.��)

with shape parameter ↵ = 2Nµ and scale parameter fs(t) =
e
st

�1
2Ns

.
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This is a non-equilibrium version of the mutation-selection-drift balance
from Chapter �.

What does this distribution look like? From the properties of the Gamma
distribution, we know that the mean and coe�cient of variation are given by

hf(t)i = ↵fs(t) =
µ

s

�
e
st

� 1
�

(�.��)

and

c
2
V
(t) =

1

↵
=

1

2Nµ
(�.��)

This suggests thatwewill againobserve a transitiondependingon themagnitude
of the scaled mutation rateNµ:

Case � (“fuzzy noise”). WhenNµ � 1, the distribution of f(t) will again be
strongly peaked around the deterministic expectation hf(t)i:

The emergence of this deterministic behavior can be rationalized by the decom-
position in Eq. (�.��). We can rewrite this as

f(t) =
tX

t0=1

✓(t0) ·

2

4 1

✓(t0)

✓(t0)X

i=0

fi(t|t0)

3

5 (�.��)
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When h✓(t0)i = Nµ � 1, many new mutations will be introduced each gen-
eration. The law of large numbers then implies that

1

✓(t0)

✓(t0)X

i=0

fi(t|t0) ⇡ hfi(t|t0)i =

(
1
N

· e
s(t�t0) if t > t0,

0 else,
(�.��)

so that

hf(t)i ⇡

tX

t0=1

Nµ ·
1

N
e
s(t�t0) ⇡

Z
t

0

µ

s
e
s(t�t0) dt0 =

µ

s

�
e
st

� 1
�
. (�.��)

When s � 0, this average frequency will continue to increase with time. How-
ever, for deleterious mutations, it will eventually saturate at a constant value,

hf(t)i =
µ

|s|

⇣
1 � e

�|s|t

⌘
�! f ⌘

µ

|s|
, (�.��)

when t � 1/|s|, which matches the deterministic mutation-selection balance
from Chapter �. This shows that this equilibrium distribution is attained on a
timescale⇠1/|s|when |s| � µ � 1/N , and that the bulk of the contribution
comes frommutations that occurred in the last⇠1/|s| generations.

We can also understand the �uctuations around this steady state by de�ning
the shifted variable,�f(t) = f(t) � f , which satis�es,

@�f(t)

@t
= µ � |s|

�
f +�f(t)

�
+

s
f +�f(t)

N
· ⌘(t) . (�.��)

When the �uctuations are small (�f(t) ⌧ f ), we can Taylor expand this equa-
tion to obtain the simpler SDE,

@�f

@t
= �|s| · �f(t) +

r
µ

N |s|
· ⌘(t) , (�.��)

���



which has the same functional form as the Brownian particle in a quadratic po-
tential from Chapter �:

x(t) $ �f(t) , r $ |s| , 2D $
µ

N |s|
(�.��)

Using our results from Section �.�, we can conclude that the �uctuations in
�f(t) will reach a typical magnitude ⇠

p
D/r = f ·

q
1

2Nµ
with a typical

turnover time of 1/r = 1/|s|.

This constitutes a dynamical version of our “Case �” behavior, where f(t) re-
mains close to its deterministic expectation, with a small amount of fuzziness
due to noise.

Case � (“jagged noise”). In the opposite case, whereNµ ⌧ 1, the distribution
of f(t) transitions to an L-shaped form that is qualitatively di�erent than the
one above. This new shape is characterized by a 1/f decay at low frequencies
and an exponential cuto� fs(t):
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This resembles a truncated form of the U-shaped stationary distribution from
Chapter �. In this case, we can gain some additional intuition for the L-shaped
“shoulder” by replotting the distribution in log space. The Jacobian factor trans-
forms the 1/f decay in linear space to a nearly constant slope in log space. This
implies that there is a roughly equal probability (⇠Nµ) of observing themutant
at a frequency with any order of magnitude up to log fs(t).

We can gain more intuition for this behavior by considering di�erent values
of s. For example, for a neutral mutation (s = 0), the scale parameter reduces
to fs(t) ⇡ t/2N , and the frequency distribution becomes:

Dynamic mutation-drift balance (Nµ ⌧ 1)

p(f, t) ⇡
2Nµ

f
e
�2Nf/t

, (�.��)

We can think about this distribution asmodeling the contribution from atmost
one randommutation event:
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Note that the scale parameter fs(t) = t/2N corresponds to the average size
of a neutral mutation that arose at t = 0, and survived until the present day.
Thus, the exponential cuto� at fs(t) corresponds to the size that a mutation
would have typically reached if it had occurred at the earliest possible time (i.e.,
the maximum typical size).

Similarly, the weight of the distribution at frequencies below fs(t) can be
understood in terms of the number of random paths that end up in the fre-
quency range log f ± O(1) by time t. Since the surviving paths increase lin-
early with time (⇠ t/N ), we can infer that the mutations that contribute to the
frequency range log f ±O(1)must have originated t0 ⇠ Nf ±O(Nf) gener-
ations ago. These mutations are produced at rateNµ per generation, each one
has a probability⇠1/Nf of drifting to its current frequency. Putting everything
together, we can obtain a heuristic formula for the frequency distribution,
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which yields

p(log f, t) ⇠ Nµ =) p(f, t) ⇠
Nµ

f
, (f ⌧ t/N) (�.��)

as desired.
What about selected mutations? For su�ciently short times (t ⌧ 1/|s|),

the scale parameter remains close to fs(t) ⇡ t/2N , so the frequency distri-
bution will be indistinguishable from the transient mutation-drift balance in
Eq. (�.��). At longer times, the dynamics of p(f, t)will strongly depend on the
sign of s.

Deleterious mutations. When s < 0, the exponential cuto� eventually satu-
rates at fs(t) ! fmax ⌘ 1/2N |s|, so that the frequency distribution reduces
to

p(f, t) ⇡
2Nµ

f
e
�2N |s|f

, (�.��)

when t � 1/|s|. This expression matches the mutation-selection-drift balance
we derived in Chapter � in the limit that Nµ ⌧ 1 and N |s| � 1. The intu-
ition for this distribution is similar to the neutral case above, with at most one
previous mutation event contributing the present day mutant frequency.
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The main di�erence is that deleterious mutations can only reach a maximum
typical size of fmax ⇠ 1/N |s| before they go extinct, so the frequency distribu-
tion will primarily re�ect mutations that occurred within the last ⇠1/|s| gen-
erations. This explains why the deleterious distribution resembles the neutral
version evaluated at an e�ective equilibration time te↵ = 1/|s|.

Note that the typical frequencies in this distribution can be very di�erent
from the average value, hfi = µ/|s|. For example, an antibiotic resistance
mutation with a �% �tness cost in the absence of drugs, and a mutation rate of
µ ⇠ 10�10, will be represented by an average ofN ·µ/|s| = 0.01 cells in a pop-
ulation of sizeN = 106. However, Eq. (�.��) shows that the mutant can reach
a size as large as ⇠N · 1/N |s| = 100 cells by stochastically drifting to higher
frequencies.

Bene�cial mutations. When s > 0, the frequency distribution retains the
same characteristic shape, but with a maximum size, fs(t) ⇡ e

st
/2Ns, that

now increases exponentially with time:

The distribution is still very broad, but in contrast to the last two cases, the con-
tributing paths now grow largely deterministically once f(t) � 1/Ns. Moti-
vated by the behavior we observed in the µ = 0 case, we can once again try to
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capture this randomness in a single random number ⌫(t), by factoring out the
expected time-dependence for a single established mutation:

f(t) ⌘
⌫(t)

2Ns
e
st
, (�.��)

Using the properties of the Gamma distribution, we can conclude that ⌫(t)will
approach the time-independent distribution,

p(⌫, t) / ⌫
2Nµ�1

e
�⌫

, (�.��)

when t � 1/s.
In this case, wewill also �nd it useful to rewrite ⌫ as an e�ective time variable

⌧est:

f(t) =
⌫

2Ns
e
st

⌘
1

2Ns
e
s(t�⌧est) =) ⌧est =

1

s
log

✓
1

⌫

◆
, (�.��)

which is sometimes known as the establishment time. Intuitively, it corre-
sponds to the time that the �rst successful mutation was able to escape genetic
drift. Strictly speaking, the de�nition in Eq. (�.��) refers to the time that f(t)
would have reached frequency 1/2Ns if it was growing deterministically the en-
tire time.
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Using our result for ⌫ in Eq. (�.��), we �nd that the distribution of ⌧est is ap-
proximately exponentially distributed:

Establishment time for a new bene�cial mutation (Nµ ⌧ 1)

⌧est ⇠ Exponential

✓
1

2Nµs

◆
± O

✓
1

s

◆
(�.��)

The �rst term in this expression re�ects the randomness in the time it takes to
produce the �rst successful mutation, while the second term represents the ran-
domness in its trajectory while it drifts to a frequency� 1/Ns.

Both terms have a simple interpretation in terms of our heuristic picture
above. The population produces newbene�cialmutations at rateNµper gener-
ation. Eachof thesemutationshas aprobability⇠sof surviving genetic drift and
establishing. This implies that successful bene�cialmutations occur as a Poisson
process with rate⇠Nµs. A successful mutation will require⇠ 1/s generations
to drift to frequency⇠ 1/Ns, andwill start to increase exponentially thereafter.

By substituting Eq. (�.��) into our asymptotic matching procedure in Sec-
tion �.�, we can obtain an analogous prediction for the total time it takes for the
mutant to �rst reach �xation:

Tfix = Exponential

✓
1

2Nµs

◆
+

2

s
log(2Ns) (�.��)

As above, the �rst term represents the time it takes for a successful mutation to
�rst appear, while the second term represents the time required for it to sweep
through the population once it arises.

When Nµ ! 0, the waiting time to produce a successful mutation will
eventually grow much longer than the sweep time, so that Tfix ⇠ 1/Nµs. In
this case, we would say that ”evolution is limited by the supply of newmutations”,
since increasingN or µwill decrease the waiting time by the same factor.
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We can compare this behavior with theNµ � 1 case, where an analogous
calculation shows that

Tfix ⇡
2

s
log

✓
s

µ

◆
(�.��)

In this case, the waiting time for the mutation to reach f(t) ⇡ 100% is most
strongly in�uenced by s, while changes inN or µ have a very weak e�ect. This
behavior is driven by the fact that multiple bene�cial mutations establish within
the �rst ⇠1/s generations after t = 0, so increasing or decreasing this number
has only a small e�ect. Wewill revisit this phenomenonwhenwe consider longer
genomes later in the course.

Long-term approach to the stationary distribution

Finally, we can use our results for the transient distribution in Eq. (�.��) to an-
swer a question we posed back in Chapter �: how long does it take to reach the
stationary distribution in Eq. (�.��)? Is it ever relevant in practice?

Our analysis above provides an answer for bene�cial or deleterious muta-
tions (N |s| � 1), so we will focus on the neutral case here. This is relevant,
for example, if we are looking at synonymous mutations in the human genome,
sincedeviationsbetween synonymous andnonsynonymous frequencies canpro-
vide a powerful test for selection (see Chapter ??).

If the population is initially composed of wildtype individuals, then the ini-
tial dynamics will follow the transientmutation-drift balance in Eq. (�.��), with
the maximum possible frequency fs(t)— corresponding to a mutation arising
at t = 0— increasing toward higher frequencies at rate t/N . This gives rise to
the left shoulder of the U-shaped distribution in Eq. (�.��):
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When t ⇠ O(N), the maximum frequency will approach 100%, and there is
a chance that the mutant will have reached �xation. At this point, back muta-
tions can create newwildtype lineages, which can�uctuate to higher frequencies
through genetic drift. This ultimately creates the right-side of the U shape.

However, in contrast to forward mutations, which are introduced at rate Nµ,
back mutations can only be produced in populations where the mutant allele
has previously �xed. These accumulate at rateNµ ·

1
N
= µ, which implies that

⇠ 1/µ generations are required to reach the full U-shape.
This relaxation timescale can be extremely long. For example, in the hu-

man genome where µ ⇠ 10�8, the equilibration time for a synonymous site
is 108 generations or⇠� billion years— far longer than humans have existed as a
species. This means that the stationary distribution in Eq. (�.��) will not apply.

Instead, we will often be interested in scenarios where t is large compared to
N but still small compared to 1/µ, so that only the left-half of the U is present:
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Quasi-stationary distribution (s = 0, N ⌧ t ⌧ 1/µ)

p(f, t) ⇡
2Nµ

f
(�.��)

While we have arrived at this formula by extrapolating our branching process
results above (which technically required f ⌧ 1), we can also derive it more rig-
orously from the full di�usionmodel in Chapter �.� Wewill also encounter this
distribution from a genealogical perspective when we discuss neutral theory
and the coalescent later in the course.

�.� Appendix

�.�.� Exact solution using the method of characteristics

In this section, we show how to solve the partial di�erential equation for the
generating function of the linear branching process using themethod of char-
acteristics.

No mutations (µ = ⌫ = 0)

We will start by considering the case without mutations (µ = ⌫ = 0), where
the mutant starts at an initial frequency f(0) = f0. The generating function
satis�es the PDE in Eq. (�.��),

@H

@t
=


sz �

z
2

2N

�
@H

@t
, (�.��)

subject to the initial conditionH(z, 0) = e
�zf0 .

�See W J Ewens, “The Di�usion Equation and a Pseudo-Distribution in Genetics, ” J Roy Stat Soc B ���� for
more details.
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Themethod of characteristics is a generalization of the trick that we used to
solve for the �xation probability of the full single-locusmodel in Chapter �. Re-
call that in that case,we founda special valueofz⇤ = 2Ns forwhich@tH(z⇤

, t) =
0. This allowed us to relate the values ofH(z⇤

, t) at long times (where f = 0, 1)
with the initial valueH(z⇤

, 0)e�z
⇤
f .

We can generalize this idea by searching for a family of curves, z⇤(t), along
which

d

dt
[H(z⇤(t), t)] = 0 . (�.��)

When this condition is satis�ed, we can again relate the values of H(z, t) be-
tween the initial timepoint and any later time,

H(z⇤(t), t) = H(z⇤(0), 0) = e
�z

⇤(0)f0 (�.��)

The line z⇤(t) = 2Ns is one such characteristic curve, but there are in�nitely
many others. Using the chain rule on Eq. (�.��), we canwrite the total derivative
as

dH(z⇤(t), t)

dt
=
@H

@t
+
@H

@z

dz
⇤

dt
=
@H

@z


sz

⇤
�

z
⇤2

2N
+

dz
⇤

dt

�
, (�.��)

wherewe have used the equation ofmotion in Eq. (�.��) to replace@H/@t. This
shows that if z⇤(t) satis�es the �rst order ODE,

dz
⇤

dt
= �sz

⇤ +
z

⇤2

2N
(�.��)

then Eq. (�.��) will be satis�ed. We can visualize this the following diagram:
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The curve z⇤(t) = 2Ns is one possible solution Eq. (�.��) corresponding to the
initial condition z⇤(0) = 2Ns. However, Eq. (�.��) shows that this only allows
us to evaluate the generating function at a special value of z = z

⇤. To obtain
the full generating functionH(z, t), we want to be able to choose the value of
z that we will use to evaluateH(z, t) in the present. In other words, we need to
�nd the initial value z⇤(0) that produces a characteristic curve with z⇤(t) = z.

This is easiest to accomplish by de�ning a corresponding curve in reverse
time (i.e. working back from the �nal time t). In particular, if we de�ne a func-
tion,

�(t0) = z
⇤(t � t

0) (�.��)

then �(t0)must satisfy the initial value problem

@�

@t0
= s��

�
2

2N
, (�.��)

with �(0) = z, and the generating function is given by

H(z, t) = e
��(t)f0 . (�.��)

In this case, the solution to Eq. (�.��) is a simple logistic function,

�(t) =
ze

st

1 + z

2Ns
(est � 1)

, (�.��)
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so the generating function is given by

H(z, t) = exp


�zf0e

st

1 + z

2Ns
(est � 1)

�
. (�.��)

Incorporating spontaneous mutations

Wecanuse a similar approach to account for spontaneousmutations. Repeating
our derivation for the µ = 0 case, we can show that the generating function for
Eq. (�.��) must satisfy

@H

@t
=


sz �

z
2

2N

�
@H

@t
� µzH , (�.��)

which includes a new term,µ·z ·H(z, t), whenµ > 0. In this case, wewill often
be interested in scenarios where the initial frequency is zero, so thatH(z, 0) =
e
�z·0 = 1.

PDEsof this formcanbe solvedusing a slight variationofmethod-of-characteristics
approach above. In particular, if we de�ne a new function,

 (t0) = logH(�(t0), t � t
0) (�.��)

where �(t0) is the characteristic curve in Eq. (�.��), then  (t0)must satisfy the
di�erential equation,

d 

dt0
= µ · �(t0) , (�.���a)

with the initial and �nal conditions

 (0) = logH(�(0), t) = logH(z, t)

 (t) = logH(�(t), 0) = 0
(�.���b)
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Integrating from t
0 = 0 to t then yields

 (t) =  (0) +

Z
t

0
µ�(t0)dt0 =  (0) + 2Nµ log

h
1 +

z

2Ns

�
e
st

� 1
�i

(�.���)

or

H(z, t) =

✓
1 + z ·

e
st

� 1

2Ns

◆�2Nµ

. (�.���)

Using the “method of Wikipedia” , we can recognize this as the generating
function of a Gamma distribution with shape parameter ↵ = 2Nµ and scale
parameter fs(t) =

e
st

�1
2Ns

:

p(f, t) =
fs(t)↵

�(↵)
f

↵�1
e
�f/fs(t) . (�.���)
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