
Chapter �

Working with the
single-locus di�usion model

The formal results in the previous chapter glossed over an important question:
what are the bene�ts of showing that a particular microscopic model is equiva-
lent to the single-locus di�usion,
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for some e�ective parametersN , s, µ, and ⌫?
One bene�t is that it is sometimes possible to speed up simulations of a par-

ticular model by replacing it with a di�erent member of the same universality
class. This is a common strategy in computational studies. For example, the
Poisson sampling step in the serial dilution model is slightly faster to simulate
on a computer than the equivalent Binomial sampling step in theWright-Fisher
model— our convergence results show that the faster version will still yield sim-
ilar predictions when the population size is large.

Similar logic applies for analytical results as well. If one model is analytically
tractable, it can provide a “mathematical speedup” for all of the other models
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that share the same universality class. In this chapter, we will show that the SDE
model in Eq. (�.�) constitutes one such example, enabling analytical results that
are di�cult or impossible to derive in the original Wright-Fisher model (or our
serial dilution model from Chapter �).

To do so, wewill need to developmethods for “integrating” stochastic di�er-
ential equations like Eq. (�.�). Thiswas trivial in the case of theGaussian random
walk in Section �.�.�, since the step sizes all had the samemean and variance. The
task is more challenging for models like Eq. (�.�) where the sizes depend on the
current value of f(t). For su�ciently dense sampling of f(t), we could general-
ize the “path-integral” formula in Eq. (�.��) to write down a similar approxima-
tion for the probability of the full trajectory,

p(f(�t), . . . , f(t)|f(0)) ⇡

t
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e
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2·�2(f(k·�t))·�t

p
2⇡�2(f(k · �t))

, (�.�)

This approximation will be valid if the frequency shifts in successive timepoints
are small enough that µ(f(t+ �t)) ⇡ µ(f(t)) and �2(f(t+ �t)) ⇡ �

2(f(t)).
Unfortunately, this path integral formulation is only rarely useful in practice,
since it is rare that we will ever have such �ne-grained measurements of f(t).
Instead, we are often interested in more coarse-grained outcomes: will the mu-
tation eventually �x or go extinct? How much do we expect its frequency to
change over a non-in�nitesimal time interval? Enumerating and summing over
all of the trajectories that contribute to these outcomes using Eq. (�.�) is often
as di�cult as solving the SDE itself.

To make progress, we will need to introduce a di�erent methodology for
working directly with SDEs like Eq. (�.�). These methods are sometimes known
as the stochastic calculus. The name may sound intimidating, but we will see
that most of these rules can be derived from straightforward applications of the
discrete update rule in Eq. (�.��). To illustrate these ideas, it will be helpful to
start by considering a simpler SDE that frequently arises in physical settings.
We will then show how we can extend these ideas to the single-locus model in
Eq. (�.�).
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�.� Detour: Brownian particle in a quadratic potential

We will start by considering the simpler problem of a Brownian particle in a
quadratic potential. This model arises in many di�erent areas of physics, and
will turn out to be useful in some evolutionary contexts as well. The goal is to
model the position of an ordinary random walker that is subject to a restoring
force F (x) = �

@V (x)
@x

. For a quadratic potential, the SDE can be written in the
general form,

@x

@t
= � r(x � x)| {z }

@V
@x

+
p

2D · ⌘(t) (�.�)

where x is the equilibrium point, r is the restoring force, andD is the di�u-
sion constant (which is proportional to the temperature kT in many physical
problems).� This is the simplest SDEmodel with non-constant coe�cients.

In the absence of noise (D = 0), the solution to Eq. (�.�) is given by the
deterministic function,

xdet(t) = x+ [x(0) � x]e�rt
. (�.�)

�If you’re curious where this equation comes form, you can think of it as an instantaneous balance between a
conservative force F (x) = �

@V (x)
@x and a viscous drag force Fdrag = ��

@x
@t when the inertia of the particle is

small. This explains why the SDE depends on the �rst derivative of x(t) rather than the second derivative that you
might expect fromNewtonianmechanics. For simplicity, wehave absorbed the drag coe�cient� into the de�nition
of V (x) in Eq. (�.�).
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This shows that the position of the particle approaches the equilibrium point x
at an exponential rate r. How does this picture change in the presence of noise?

One way to approach this question is to focus on the moments of x(t), e.g.
the mean hx(t)i. We can calculate this quantity by recalling that our SDE no-
tation is shorthand for the discrete update rule in Eq. (�.��). For the SDE in
Eq. (�.�), the corresponding update rule is

x(t+ �t) = x(t) � r[x(t) � x]�t+
p

2D · �t · Zt , (�.�)

where Zt is a Gaussian random variable hZti = 0 and hZ
2
t
i = 1. Taking the

average of both sides, we �nd that

hx(t+ �t)i = hx(t) � r[x(t) � x]�t+
p

D · �t · Zti

= hx(t)i � r [hx(t)i � x] �t+ 0 (�.�)

where we have exploited the linearity of the expectation and the fact that hZti =
0. This is now a deterministic update rule for the mean position hx(t)i. Taking
di�erences and dividing by �t yields

hx(t+ �t)i � hx(t)i

�t
= �r [hx(t)i � x] (�.�)

which reduces to

@hx(t)i

@t
= �r [hx(t)i � x] (�.�)

in the limit that �t is small. We’ve now reduced our stochastic di�erential equa-
tion to an ordinary di�erential equation for hx(t)i. The solution is given by

hx(t)i � x = [x(0) � x] e�rt (�.�)

which is equivalent to the deterministic solution in Eq. (�.�). Thus, in this par-
ticular example, the average value of x(t) is unchanged by the addition of noise.
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What about the spread around this average value? When x(0) = x = 0, the
variance in theposition is givenby the secondmoment, hx(t)2i. We can calculate
this quantity using the same basic procedure that we used for the mean:

Step �: We can start by using the update rule in Eq. (�.�) to write down an ex-
pression for x(t+ �t)2,

x(t+ �t)2 =
h
x(t) � rx(t)�t+

p

2D�tZt

i2
(�.��)

Taking the average of both sides yields:

hx(t+ �t)2i =

⌧h
x(t) � rx(t)�t+

p

2D�tZt

i2
�

(�.��)

Step �:We can then expand the terms in the right hand side as a power series in
�t. This yields

hx(t+ �t)2i =
D
x(t)2 � 2rx(t)2�t+ 2x(t)

p

D�tZt + 2DZ
2
t
�t+ . . .

E

= hx(t)2i � 2rhx(t)2i�t+ 2D�t+ . . . (�.��)

where we have used the fact that hZti = 0 and hZ
2
t
i = 1.

Step �:We can then rewrite this expression as a di�erence equation:

hx(t+ �)2i � hx(t)2i

�t
= �2rhx(t)i + 2D + . . . (�.��)

where the higher-order terms are all larger powers of �t. When �t is small, this
yields an ordinary di�erential equation for the second moment

@hx(t)2i

@t
= �2rhx(t)2i + 2D (�.��)

��



The �rst term is exactly what we’d expect by applying the chain rule to the de-
terministic solution,

@[xdet(t)2]

@t
= 2xdet(t) · @txdet(t) = �2rxdet(t)

2 (�.��)

The second term in Eq. (�.��) is a new contribution that arises purely from the
addition of noise. This term arose from taking the average of two correlated
noise terms, each of which was/

p
�t. In this way, we see that SDEs require us

to generalize the ordinary chain rule from calculus (this is often known as Ito’s
formula).

At long times, the variance approaches the steady-state value

@hx(t)2i

@t
= 0 =) hx(t)2i =

D

r
(�.��)

which constitutes a balance between the di�usive noiseD and the deterministic
restoring force r. Larger values ofD (or smaller values of r) lead to larger devi-
ations from x, while smaller values ofD (or larger values of r) lead to a tighter
distribution.

One can repeat the steps above to calculate higher moments of x(t). In this
case, it is also possible to calculate the entire distribution of x(t) at long times.
We can do this by turning to the Fokker-Planck representation of the SDE (Sec-
tion �.�.�). For a general SDE of the form

@x

@t
= �

@V (x)

@x
+

p

2D · ⌘(t) , (�.��)

the corresponding Fokker-Planck equation is

@p(x, t)

@t
= �

@

@x


�
@V

@x
· p(x, t)

�
+

@
2

@x2
[Dp(x, t)] . (�.��)

At long times, we expect that the time derivatives will vanish (@tp = 0), so that
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the steady-state distribution will satisfy

0 = �
@

@x


�
@V

@x
· p(x, t)

�
+

@
2

@x2
[Dp(x, t)] (�.��)

The solution is given by the so-called Boltzmann distribution

p(x) / e
�

V (x)
D , (�.��)

which you might recognize from a course in equilibrium statistical mechanics.
In the Boltzmann distribution, the most likely position of the particle is the one
with the lowest value of V (x). This will often occur at a local minimum of
V (x), where

@V

@x

����
x=x⇤

= 0 ,
@

2
V (x)

@x2

����
x=x⇤

> 0 (�.��)

Ifwe expandaround this point, theBoltzmanndistribution approaches theGaus-
sian form,

p(x) / e
�

V (x⇤)+V 0(x⇤)(x�x⇤)+
V 00(x⇤)

2 (x�x⇤)2+...

D / e
�

V 00(x⇤)
2D (x�x

⇤)2 (�.��)

with mean hxi = x
⇤ and variance �2 = D/V

00(x⇤). This approximation is
exact in the case of our quadratic potential, where x⇤ = x and V

00(x) = r.
Thus, we can think about the quadratic potential as describing the generic be-
havior of a Brownian particle near a local energyminimum. This will be a “Case
�” distribution according to our terminology in Section �.�.�: the particle will
stay close to its deterministic expectation (x⇤) with some fuzziness due to noise
(±

p
D/V 00(x⇤)).
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�.� Back to the single-locus model

We can now try to use the same techniques to analyze the single-locus model in
Eq. (�.�). This model has two key di�erences from the Brownian particle exam-
ple above:

�. The e�ective di�usion coe�cient now depends on the current value of
f(t). This means that the strength of noise will vary for di�erent parts of
the mutation trajectory.

�. The selection term in the deterministic portion of the SDE is now a non-
linear function of f(t).

These may seem like small di�erences, but we will see that they can have a pro-
found e�ect on the dynamics of the resulting mutation trajectories.

�.� Dynamics of the mean and variance

For example, if we want to calculate the average mutation frequency hf(t)i,
starting from a given frequency f(0), we can repeat the procedure above starting
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from the analogous discrete update rule:

f(t+ �t) = f(t) + sf(t)[1 � f(t)]�t+ µ(1 � f)�t

� ⌫f�t+

r
f(t)[1 � f(t)]�t

N
· Zt .

(�.��)

Taking the average of both sides, we �nd that

hf(t+ �t)i = hf(t)i + s
⇥
hf(t)i � hf(t)2i

⇤
�t

+ µ(1 � hf(t)i)�t � ⌫hf(t)i�t
(�.��)

or in di�erential form,

@hfi

@t
= s[hfi � hf

2
i] + µ(1 � hfi) � ⌫hfi . (�.��)

Note that the selection term contains a contribution from the second moment
hf(t)2i, rather than the �rst moment squared. Thus, in contrast to the example
in the previous section, we will generally need to know the behavior of the sec-
ond moment hf(t)2i to calculate the dynamics of the mean frequency hf(t)i.

We can repeat the same procedure to derive a corresponding equation for
the second moment hf(t)2i. In this case we �nd that

@hf
2
i

@t
= 2s · hf · f(1 � f)i| {z }

from deterministic
part (chain rule)

+
f(1 � f)

N| {z }
collision of correlated

stochastic terms

+ . . . (�.��)

where we have omitted the contributions from the mutation terms. This equa-
tion depends on the �rst and second moments of f(t), but it also has a contri-
bution from the third moment hf(t)3i. An analogous calculation shows that
the third moment depends on the fourth moment, and so on. In this case, we
say that the the moment hierarchy does not close (also known as “moment
hell”). This e�ect will always occur when we are dealing with nonlinear SDEs.
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Since thenon-linearities areultimately causedby the selection term inEq. (�.�),
one approach is to restrict our attention to scenarios where natural selection is
absent (s = 0). In this neutral limit, the moment equations do close, and
one can derive exact solutions for the dynamics of the mean and variance of the
mutation trajectory. (Youwill carry out this calculation yourself in Problem � of
Homework �). Much of the classical population genetics literature has focused
this limit, and a sophisticated set of mathematical tools (collectively known as
the neutral theory) have been developed for analyzing this case. We will revisit
this topic later in the course when we talk about multi-site genomes. For the
rest of this chapter, we will continue to consider cases where natural selection is
present.

�.� Stationary distribution

We can also try to derive an analogue of the stationary distribution in Eq. (�.��).
The Fokker-Planck equation for the single-locus model in Eq. (�.�) is given by

@p(f, t)

@t
= �

@

@f
[(sf(1 � f) + µ(1 � f) � ⌫f) p(f, t)]

+
@

2

@f 2


f(1 � f)

2N
· p(f, t)

� (�.��)

In this case, one can show� that the stationary distribution (@tp ⇡ 0) can be
written in the general form,

p(f) / f
�1(1 � f)�1

e
�2N⇤(f)

, (�.��)

where the function⇤(f) is de�ned by

⇤(f) = � [sf + µ log f + ⌫ log(1 � f)] (�.��)
�For example, one can verify that this is a solution by substituting it into Eq. (�.��). Amore constructive deriva-

tion is given in the Appendix at the end of this chapter.
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Equation (�.��) can be viewed as the frequency-space analogue of the Boltz-
mann distribution in Eq. (�.��). The function ⇤(f) plays the role of the po-
tential function V (x). This analogy goes beyond the Boltzmann-like form of
Eq. (�.��): the⇤(f) function has the special property that

@⇤(f)

@f
= �

1

f(1 � f)

✓
@f

@t

◆

det
, (�.��)

where (@f/@t)det is the deterministic portion of the SDE in Eq. (�.��). Thus,
in the absence of noise, the deterministic dynamics of f(t) will act to decrease
the value of⇤(f):

✓
d⇤(f(t))

dt

◆

det
=
@⇤

@f

✓
@f

@t

◆

det
= �

1

f(1 � f)

✓
@f

@t

◆2

det
 0 (�.��)

similar to the classical minimization of the potential energy. Conversely, the in-
verse population size 1/2N constitutes the analogue of the di�usion coe�cient
(or temperature) in Eq. (�.��), which parameterizes the overall strength of noise.
Large values of N will tend to amplify the importance of the energy function
⇤(f), while small values ofN will make it less important. For the speci�c form
of⇤(f) in Eq. (�.��), the stationary distribution reduces to:

Stationary distribution for a single genetic locus
(mutation-selection-drift balance)

p(f) / f
2Nµ�1(1 � f)2N⌫�1

e
2Nsf (�.��)

This is a celebrated result known asmutation-selection-drift-balance (orig-
inally derived by Sewall Wright in the ����’s). It describes the long-term distri-
bution of the mutation’s frequency under the joint action of natural selection,
mutation, and genetic drift. The shape of this distribution will strongly depend
on the values of the compound parametersNµ andN⌫. These are sometimes
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known as the population scaled mutation rates ormutation supply rates;
they have a natural interpretation as the number of newmutations produced by
the population each generation (similar to our Fermi calculation in Chapter �).

Case � (“fuzzy noise”). When Nµ,N⌫ � 1, the stationary distribution in
Eq. (�.��) becomes strongly peaked around a characteristic frequency f ⇤, which
minimizes the potential energy function⇤(f).

This minimum occurs when

@⇤

@f
= f

�1(1 � f)�1

✓
@f

@t

◆

det
= 0 (�.��)

which implies that it is an equilibrium solution of the deterministic dynamics,
✓
@f

@t

◆

det
= sf

⇤(1 � f
⇤)| {z }

selection

+ µ(1 � f
⇤) � ⌫f

⇤

| {z }
mutation

= 0 (�.��)

This point is often known as deterministic mutation-selection balance (or
just deterministic mutation balance if s = 0), since it is independent of
genetic drift. We can use the quadratic formula to solve for f ⇤ as a function of
s, µ, and ⌫. However, it can be more instructive to examine its leading-order
behavior in di�erent asymptotic limits. Using the dominant balance methods
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in Chapter �, one can show that

f
⇤
⇡

8
><

>:

µ

|s|
if s < 0 and |s| � µ, ⌫,

µ

µ+⌫
if |s| ⌧ µ, ⌫,

1 �
⌫

s
if s > 0 and s � µ, ⌫.

(�.��)

Each of these cases has a simple heuristic interpretation:

The �rst case represents a balance between forward mutations and negative se-
lection (s < 0), which pins the mutant strain at a small but nonzero frequency.
This equilibrium frequency is larger for higher mutation rates, and smaller for
larger �tness costs. The second case represents a balance between forward and
back mutations, leading to a mixture of mutant and wildtype at intermrediate
frequencies. The last case represents a balance between positive selection and
back mutation, which pins the wildtype population at a small but nonzero fre-
quency. Stronger positive selection pushes the mutant closer to �xation, but
while higher rates of back mutation push it down.

Ifwe expandaroundf ⇤, the stationarydistribution again approaches aGaus-
sian form,

p(f) / f
⇤�1(1 � f

⇤)�1
e
�2N⇤(f⇤)�N⇤00(f⇤)(f�f

⇤)2 (�.��)

which has a variance equal to

�
2
f
=

1

2N⇤00(f ⇤)
=

[f ⇤(1 � f
⇤)]2

2N
⇥
µ(1 � f ⇤)2 + ⌫f ⇤2

⇤ (�.��)
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OurGaussian expansion assumed that this spread is small compared to the peak
frequency f ⇤. Plugging in our expression for f ⇤ in Eq. (�.��), we see that this
will be true when Nµ � 1 and N⌫ � 1, which is exactly the regime we are
considering. In this case,we can thinkof genetic drift as inducing a small amount
of spread around the deterministic expectation forf(t) (“fuzzy noise” according
to our classi�cation system in Chapter �).

Case � (“jaggednoise”). In theopposite case,whereNµ,N⌫ ⌧ 1, thef�1(1�
f)�1 prefactor in Eq. (�.��) causes the stationary distribution to adopt a U-
shaped form that is qualitatively di�erent from the case above.

ThisU-shapeddistributionhas a pair of peaks at f = 0 and f = 1, with “shoul-
ders” that fall of as⇠1/f and⇠1/(1� f) respectively. The relative heights of
the shoulders are (roughly) controlled by the exponential factor e2Nsf , which
increases by a factor of e2Ns between f ⇡ 0 and f ⇡ 1. It is clear that these U-
shapeddistributions cannotbe interpreted as a small perturbation away fromthe
deterministic expectation above — even when the population size is very large.
As long as the corresponding mutation rates are small enough that Nµ < 1,
then genetic drift will always play a non-negligible role. Interestingly, we will
see in later chapters that empirical mutation frequency distributions (e.g. in hu-
mans) are often of theU-shaped variety, suggesting that thiswill be an important
case to consider when we are interested in making connections to data.
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�.� Extinction and �xation probabilities

While the stationary distributions were more analytically tractable than themo-
ment equations in Section �.�, they raise several natural questions that are dif-
�cult to answer from these formal solutions alone. What’s going on “behind
the scenes” to generate the stationary distributions above? i.e. what do the in-
dividual mutation trajectories look like? What do the the “shoulders” of the U-
shaped distribution correspond to? And perhaps most importantly, how long
does it take for the population to reach this long-term steady-state? Will it ever
be relevant in practice (e.g. when making comparisons with data)?

We can start to gain some insight into these questions by considering a �-
nal stationary distribution scenario. If we consider a single-locus model in the
absence of new mutations (µ = ⌫ = 0),

@f

@t
= sf(1 � f)| {z }

selection

+

r
f(1 � f)

N
⌘(t)

| {z }
genetic drift

(�.��)

then at long times we know that the mutationmust either �x or go extinct. The
stationary distribution will therefore consist of two spikes at f = 0 and f = 1:

p(f |f0) = pfix(f0) · �(f � 1) + (1 � pfix(f0)) · �(f) (�.��)

whose relative heights are speci�ed by a single number

pfix(f0) = Pr[f(1) = 1|f(0) = f0] (�.��)

that depends on the initial frequency f0.
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This number can be interpreted as the�xation probability of amutation that
started at an initial frequency f0. The dependence on the initial condition is
critical — in the absence of further mutations, a mutant that started at ���%
frequency will remain there ���% of the time, while a mutant with f0 = 0 is
guaranteed to stay extinct. Due to this dependence on the initial condition,
the stationary distribution in Eq. (�.��) is capturing a fundamentally out-of-
equilibrium process, even though it is phrased in terms of a long-term equilib-
riummeasurement.

The Fokker-Planck equation is not very useful for discrete distributions like
Eq. (�.��), since the derivatives with respect to f are not really well-de�ned.
However, the generating function,

H(z, t) ⌘ he
�zf(t)

i =

Z
e
�zf

p(f, t|f0) df , (�.��)

is still very useful in this case. Since the generating function is just a moment
of f(t), we can derive a (deterministic) equation forH(z, t) using the same ap-
proach we used for hf(t)i and hf(t)2i in Section �.�.

Deriving an equation of motion forH(z, t):

Using the in�nitesimal version of Eq. (�.��),

f(t+ �t) = f(t) + sf(t)[1 � f(t)]�t+

r
f(t)[1 � f(t)�t]

N
Zt (�.��)
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we can express the generating function in the next timestep as

H(z, t+ �t) ⌘

D
e
�zf(t+�t)

E

=

*
e
�z


f(t)+sf(t)[1�f(t)]�t+

q
f(t)[1�f(t)]�t

N Zt

�+
(�.��)

Expanding the right hand side in powers of �t, we obtain

H(z, t+ �t) ⇡

D
e
�zf(t) [1 � zsf(t)[1 � f(t)]�t

�

r
f(t)[1 � f(t)]�t

N
Zt +

z
2
f(1 � f)Z2

t

2N
�t

#+
(�.��)

H(z, t+ �t) ⇡

D
e
�zf(t) [1 � zsf(t)[1 � f(t)]�t

�

r
f(t)[1 � f(t)]�t

N
Zt +

z
2
f(1 � f)Z2

t

2N
�t

#+

⇡ he
�zf(t)

i �

✓
zs �

z
2

2N

◆
hf(t)[1 � f(t)]e�zf(t)

i�t (�.��)

where we have exploited the linearity of the expectation and the fact that Zt is
an independent random variable with hZti = 0 and hZ

2
t
i = 1. Note that

the second term can be rewritten in terms of the generating function by taking
derivatives with respect to the (deterministic) variable z:

hf(1 � f)e�zf
i = �

⌧✓
@

@z
+

@
2

@z2

◆
e
�zf

�
= �

✓
@H

@z
+
@

2
H

@z2

◆
(�.��)

Substituting this result into Eq. (�.��), we obtain a partial di�erential equation
for the moment generating function,

@H(z, t)

@t
=


sz �

z
2

2N

� 
@H(z, t)

@z
+
@

2
H(z, t)

@z2

�
. (�.��)
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We could have also derived this equation by taking the Laplace transform of the
Fokker-Planck equation in Eq. (�.��), emphasizing that these two formulations
are equivalent representations ofp(f, t). We can see any discreteness in the prob-
ability density will still produce a continuous dependence on z, so Eq. (�.��) is
still well-de�ned even for spiky distributions like Eq. (�.��).

Back to the �xation probability

The PDE in Eq. (�.��) are still di�cult to solve in the general case. However,
there is a particular value of the dummy variable z where the dynamics greatly
simplify. Wenote that if we take z⇤ = 2Ns, then the prefactor on the right hand
side of Eq. (�.��) vanishes, so that

@H(z⇤
, t)

@t
= 0 =) H(z⇤

, t) = const (�.��)

This allows us to connect the value ofH(z⇤
, t) at the initial and�nal timepoints:

 

If the mutation frequency starts at f = f0, then

H(z⇤
, 0) = he

�z
⇤
f0i = e

�z
⇤
f0 (�.��)

while the stationary distribution (Eq. �.��) yields

H(z⇤
,1) = he

z
⇤
f(1)

i = pfixe
�z

⇤
·1 + (1 � pfix)e

�z
⇤
·0 (�.��)
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Equating these two expressions yields a formula for the �xation probability of
the mutant lineage as a function of the population sizeN , the �tness advantage
(or disadvantage) s, and the initial frequency f0:

Fixation probability (Kimura formula)

pfix(N, s, f0) =
1 � e

�2Nsf0

1 � e�2Ns
(�.��)

This is a celebrated result that is sometimes known as the “Kimura formula” .
We can see that the population sizeN and the selection strength s always enter
through their productNs (often known as the scaled selection strength). This
signals that �xation emerges from a battle between the forces of natural selection
and genetic drift. There will be two characteristic regimes that depend on the
overall magnitude ofNs:

Weak-selection regime. WhenN |s| ⌧ 1, the �xation probability reduces to
the neutral limit,

pfix ⇡ f0 , (�.��)

where mutations �x in proportion to their initial frequencies. This tells us that
the neutral behavior from Chapter � applies not just in the extreme case where
s = 0, but rather for any value of |s| ⌧ 1/N . In this weak selection regime,
genetic drift will always dominate over natural selection.

Strong-selection regime. In the opposite case, where N |s| � 1, the fate of
the mutation will strongly depend on the sign of s and the initial frequency f0.
For bene�cial mutations (s > 0), Eq. (�.��) reduces to

pfix ⇡ 1 � e
�2Nsf0 (�.��)
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This equation exhibits two characteristic regimes that dependon the compound
parameterNsf0:

pfix ⇡

(
1 ifNsf0 � 1,
2Nsf0 ifNsf0 ⌧ 1.

(�.��)

In the �rst case (Nsf0 � 1), themutationwill �x nearly ���% of the time. This
matches our intuitive picture of natural selection, which acts to drive bene�cial
variants to �xation. We can therefore think of this case as one where natural
selection dominates over genetic drift.

In the opposite case (Nsf0 ⌧ 1), the �xation probability becomes much
smaller than one, and themutant will go extinctmost of the time. This behavior
is most extreme in the case of a new mutation, where f0 = 1/N . Substituting
this value into Eq. (�.��) leads the simple formula for the �xation probability of
a new mutation:

Fixation probability of a new bene�cial mutation

For a strongly bene�cial mutation (Ns � 1) with an initial frequency
f0 = 1/N , the �xation probability reduces to

pfix ⇡ 2s , (�.��)

which is independent of the population sizeN . This is a celebrated result
known asHaldane’s formula.

We cangain some intuition for this result byplugging in someconcretenumbers:
a new mutation with a �tness bene�t of s ⇡ 0.01 in a population of sizeN =
106 would be predicted to �x only �% of the time. In the other ��% of cases, the
mutation will drift to extinction. Thus, genetic drift has a profound e�ect on
the long-term fate of the mutation, even whenNs is much larger than one. At
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the same time, we have seen from our simulations in Chapter � that the same
mutationmixed at a ��-�� ratio will rapidly and consistently take over. How can
we explain these divergent outcomes?

Since the strength of genetic drift is proportional to 1/N , we might naively
expect that for largeN , the genetic drift termwould eventually constitute only a
small perturbation to Eq. (�.��). This would suggest that the dominant balance
is given by the deterministic terms,

@f

@t
⇡ sf(1 � f) , (�.��)

which produces the logistic trajectory,

f(t) =
f0e

st

1 � f0 + f0e
st
. (�.��)

However, this deterministic expression predicts that a bene�cial mutation will
always approach �xation, regardless of its initial frequency f0. This suggests
that something goes wrong with our dominant balance argument, at least when
Nsf0 ⌧ 1. This behavior is sometimes known as a singular limit— it refers
to a scenario where arbitrarily small values of ✏ = 1/N produce qualitatively
di�erent behavior than we observe if we directly set ✏ = 0. We will see that
such singular limits will often arise in evolutionary problems (often in a similar
context related to the overall population sizeN ). How can we understand this
behavior in the present case?

One approach is to note that according to Eq. (�.��), the fate of a mutation
is only uncertain once f0 . 1/2Ns ⌧ 1. Mutations with f0 � 1/2Ns will
nearly always �x, even when f0 itself is very small. This suggests that it would
be interesting to focus on mutations with f0 ⌧ 1/2Ns, and then break the
trajectory into two parts: an initial phase from f0 to an intermediate frequency
f

⇤
⌧ 1, and a second phase from f

⇤
! 1.
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Since our di�usion model doesn’t allow for large jumps, we know that all suc-
cessful mutations must eventually pass through f

⇤ before they are able to �x.
This means that we can decompose the �xation probability into two pieces,

pfix(f0) = Pr[f0 ! f
⇤] · pfix(f

⇤) , (�.��)

where

Pr[f0 ! f
⇤] =

pfix(f0)

pfix(f ⇤)
=

2Nsf0

pfix(f ⇤)
(�.��)

is the probability that the mutation ever reaches f ⇤ before it goes extinct. By
varying the intermediate frequency f ⇤, we can gain some additional insight into
the source of the uncertainty in themutation’s long-termprobability of�xation.
Given the functional formof Eq. (�.��), we expect that the behaviorwill strongly
depend on the compound parameterNsf

⇤:

• If f ⇤
� 1/2Ns, then pfix(f ⇤) ⇡ 1, and the probability of reaching f ⇤

becomes

Pr[f0 ! f
⇤] ⇡

2Nsf0

1
⇡ pfix(f0) (�.��)

This shows that all the uncertainty in the mutation’s fate plays out while
it transits through frequencies less than f

⇤. In other words, selection al-
ways dominates over genetic drift once the mutation frequency �rst ex-
ceeds f ⇤

� 1/2Ns.
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• On the other hand, if f ⇤
⌧ 1/2Ns, then the probability of reaching f ⇤

becomes

Pr[f0 ! f
⇤] ⇡

2Nsf0

2Nsf ⇤
=

f0

f ⇤
(�.��)

This is independent of the selection coe�cient s, and matches the prob-
ability that a neutral mutation reaches f ⇤ before it goes extinct. This sug-
gests that the dynamics of f(t)will be similar to a neutral mutationwhen
f(t) ⌧ 1/2Ns ⌧ 1.

These considerations hint at an interesting partitioning of frequency space:

There is a region where f ⌧ 1/2Nswhere genetic drift always dominates over
natural selection. Conversely, there is also a region1/2Ns ⌧ f ⌧ 1where nat-
ural selection dominates over genetic drift, even while the mutant itself remains
rare. There is also a crossover region around 1/2Ns where both drift and se-
lection are relevant. However, Eq. (�.��) shows that the width of this crossover
region is relatively narrow compared to the other two regimes above — a few
multiples of 1/2Ns are su�cient to enter the selection dominated region, while
the converse is true for the drift dominated region.

This partitioning of frequency space helps explain the divergent outcomes
as a function of the mutation’s initial frequency. The drift-dominated region is
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irrelevant for mutations that are initialized in a ��-��mixture, so we expect it to
play a major role in the competition assays that are used tomeasure s. However,
the existence of the drift dominated region is extremely important for evolution,
because all new mutations will arise at an initial frequency that is always much
smaller than 1/Ns. These mutations must always pass through the drift domi-
nated region before natural selection is able to take over. This explains why ge-
netic drift can never be fully neglected, even in asymptotically large populations
(Ns � 1).

Next steps: Since all the interesting parts of this process take place at low fre-
quencies, it suggests that we can obtain a complete picture of the dynamics by
focusing on the limitwhere the frequencies are allmuch smaller than1. Thiswill
lead to crucial simpli�cations of the single-locus model in Eq. (�.�) that will en-
able signi�cant analytical progress. Wewill consider this case in the next chapter.
We will then see how we can patch this solution onto the deterministic dynam-
ics that take place at higher frequencies, using a technique known asasymptotic
matching. Together, these analyseswill allowus to obtain a complete picture of
the trajectories of new mutations in the single-locus model in Eq. (�.�). We will
then be in a position to compare these predictions to DNA sequencing data.

�.� Appendix

�.�.� Solving for the stationary distribution

One can verify that our solutions for the stationary distribution in Eqs. (�.��)
and (�.��) are correct by substituting them into their corresponding Fokker-
Planck equations. This emphases how solving di�erential equations really only
requires a lucky guess. Nevertheless, it can sometimes be useful to see a more
“constructive”derivation tomotivatewhere these solutions come from. Wepresent
one such argument below.
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Brownian particle example

For aBrownianparticle in a general potential, the stationaryFokker-Planck equa-
tion can be written as

@

@x


V

0(x)

D
p(x) +

@p(x)

@x

�
= 0 (�.��)

Integrating once over x yields

V
0(x)

D
p(x) +

@p(x)

@x
= C1 (�.��)

whereC1 is a constant of integration. Multiplying both sides by the integrating
factor e

V (x)
D yields
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@x

h
p(x)e

V (x)
D

i
= C1e

V (x)
D (�.��)

Integrating one more time over x yields

p(x) = C2e
�

V (x)
D + C1e

�
V (x)
D

Z
x

0
e

V (x)
D . (�.��)

whereC2 is another integration constant. To ensure that p(x) remains�nite and
nonnegative as |x| ! 1, we can see that the �rst integration C1 must vanish.
This yields the Boltzmann equation in Eq. (�.��) above.

Single-locus model of mutation frequencies

A similar argument can be used for the single-locus model in Eq. (�.�). In this
case, the stationary Fokker-Planck equation can be written as
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If we de�ne

p̃(f)(f) = f(1 � f)p(f) (�.��)

and

⇤(f) = �

Z ✓
s+

µ

f
�

⌫

1 � f

◆
df = � [sf + µ log f + ⌫ log(1 � f)]

(�.��)

then we can rewrite this as

@

@f


2N⇤0(f)p(f) +

@p(f)

@f

�
= 0 (�.��)

This is the same form as the example above with the replacements p(x) !

p̃(f)(f),D ! 1/2N andV 0(x) ! ⇤0(f). A similar argument therefore yields

p̃(f)f = f(1 � f)p(f) / e
�2N⇤(f)

. (�.��)

which is equivalent to the stationary distribution in Eq. (�.��) in the main text.

�.�.� Formal solutions for the time-dependent case

This approach can be extended to obtain a formal solution for the full time-
dependent Fokker-Planck equation. The basic idea is to utilize the separation of
variables technique, writing a particular solution in the factorized form

p(f, t) = �(f) ·  (t) (�.��)
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Substituting this ansatz into Eq. (�.��), we see that a general solution can be
written as an eigenfunction decomposition,

p(f, t) =
1X

n=0

cne
��nt

�n(f) (�.��)

where �n and �n(f) are the solutions to the eigenvalue problem,

��n�n(f) = �
@

@f
[(sf(1 � f) + µ(1 � f) � ⌫f) p(f, t)]

+
@

2

@f 2


f(1 � f)

2N
· p(f, t)

� (�.��)

given the boundary conditions on p(f, t). Kimura showed that the solutions
to this eigenvalue problem can be written as solutions of the oblate spheroidal
equation.� While some progress can be made by starting from this formal so-
lution, we will see that signi�cantly more intuition about the time-dependent
behavior can be obtained by leveraging the branching process approximations
described in Chapter �. For this reason, the series solution in Eq. (�.��) will be
of limited use for us in this course.

�The details can be found in Kimura, “Stochastic processes and distribution of gene frequencies under natural
selection,” Cold Spring Harb Symp Quant Biol (����).
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