
Chapter �

Microscopic Models and the
Di�usion Limit

�.� Microscopic models of evolution

In the previous chapter, we developed a microscopic model for the dynamics of
a mutation’s frequency, based on an idealized version of a serial dilution exper-
iment. However, there are many other microscopic models we could have con-
sidered.

Experimentally motivated models. Some are experimentallymotivated like
Chapter �. An important example is the chemostat, which is a device used for
maintaining continuously growing cells at a �xed growth rate.
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In this model, nutrients are continuously supplied to the (well-mixed) culture
vessel at a �xed rate, and cells and media are removed (i.e. diluted out) at a �xed
rate � (measured in volume/sec). The bacteria will therefore grow until they
reach a steady state size N , where the growth rate of the bacteria is exactly bal-
anced by �.� The chemostat is appealing from both a theoretical and physiolog-
ical standpoint, because unlike our serial dilution model, there is no temporal
variation in growth throughout the day. Despite these advantages, chemostats
can be tricky to set up in practice, and this has tended to limit the length of time
and number of replicate populations that can be evolved in this way.

Mathematically motivated models. Other microscopic models are de�ned
purely mathematically. Many of the most commonly studiedmodels in popula-
tion genetics fall into this latter category. These are sometimes referred to asball-
and-urn models or bean bag genetics, since they attempt to abstract away
most of the underlying biology. Some notable examples include the Moran
model:

�You can explore the dynamics of this model in more detail in Problem � on Homework �.
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where individuals replace each other one at a time. Another common example
is theWright-Fisher model,

which is similar to the Moran model, except that all of the individuals in the
new generation are chosen at the same time. Both of these models di�er from
the chemostat and serial dilution examples above in that the total population size
is �xed. For a populationwith a singlemutant type, theWright-Fisher dynamics
yield a binomial update rule,

f(t+ 1) ⇠
1

N
· Binomial

✓
N,

f(t)es

1 � f(t) + f(t)es

◆
, (�.�)

which is similar — but not identical to — the Poisson update rule in our serial
dilution model in Chapter �.
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One of the reasons that theWright-Fishermodel is so popular is that Eq. (�.�)
admits an exact result for themean and variance of f(t) in the absence of natural
selection (s = 0). Similar to the serial dilution model, we �nd that

E[f(t)] = E[f(t � 1)] = . . . = f0 (�.�)

Using the following property of theBinomial(N, p) distribution:

E[n(N � n)] =
NX

n=0

n(N � n)

✓
N

n

◆
p

n(1 � p)N�n

= N(N � 1)p(1 � p)
N�1X

n=1

✓
N � 2

n � 1

◆
p

n�1(1 � p)N�n�1

= N(N � 1)p(1 � p) , (�.�)

we can derive a similar recursion for the so-called heterozygosity:

E[f(t)(1 � f(t))] =

✓
1 �

1

N

◆
E[f(t � 1)(1 � f(t � 1))] , (�.�)

which implies that

E[f(t)(1 � f(t))] ⇡ f(0)(1 � f(0))e�t/N (�.�)

The heterozygosity decays as t ! 1, which makes sense because we know that
the mutation must eventually either �x (f = 1) or go extinct (f = 0). The
timescale of this process (t⇠N ) is consistent with the heuristic argument we
made in Chapter �.

�.� Universality and the Di�usion Limit

Equations (�.�) and (�.�) are about it as far as exact results go, even for such ridicu-
lously simple “bean bag genetics” models. This is a sobering thought — if the

��



simplest models are this hard, how could we hope tomake progress for anything
remotely resembling a real biological organism (e.g. in�uenza)?

At the same time, itmight come as a surprise to learn that the�eld of popula-
tion genetics routinely applies versions of these simple models (particularly the
Wright-Fisher example) to genomic data from real biological populations (e.g.
humans) — and they often do a surprisingly good job. Why does this work at
all? After all, it’s pretty clear that humans are de�nitely not reproducing accord-
ing to the Wright-Fisher diagram above.

In the following sections, we’ll start to get a partial answer to both of these
questions by introducing the di�usion limit of population genetics. This
is one of my favorite results in classical population population genetics, and has
some deep connections to the concepts of universality, coarse-graining, and
the renormalization group (RG) in physics. Along the way, we will also de-
velop the mathematical concept of a stochastic di�erential equation, which
will be an important theoretical tool that we’ll use throughout the rest of the
course. To do so, it will be helpful to �rst take a brief detour from our evolu-
tionary applications, and revisit the classical mathematical problem of a discrete
random walk.

�.�.� Detour: ordinary random walks

Let’s start by considering the simpler problemof adiscrete-time randomwalk.
Let x(t) denote the position of a particle at time t = 0, 1, 2, . . . , etc. In each
timestep, the position of the particle is incremented by an independent random
variable�xt, which is Gaussian distributed with mean zero and constant vari-
ance:

x(t+ 1) = x(t) +�xt , �xt

i.i.d.
⇠ Gaussian(0, �2) . (�.�)

Starting from a given value of x(0), this recursion generates a random sequence
of positions, x(0) ! x(1) ! . . . x(t), similar to our mutation frequency
model in Chapter �. Using the fact that sums of independent Gaussian random
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variables are also Gaussian,

X

i

Gaussian(µi, �
2
i
) ⇠ Gaussian

 
X

i

µi,

X

i

�
2
i

!
, (�.�)

we can conclude that the position of the particle is also a Gaussian

x(t) = �x0 +�x1 + . . .�xt�1 ⇠ Gaussian(0, �2
· t) (�.�)

with a width that grows /
p
t. These dynamics are known as Brownian mo-

tion or di�usion; in this course, we will use the phrase physical or spatial dif-
fusion so that we can distinguish it from the population genetic version we will
eventually introduce below.

In addition to the marginal distribution of x(t), we can also write down the
probability of an entire path x(0) ! x(1) ! . . . x(t),
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by noting that the increments in successive timepoints are all independentGaus-
sians:

p(x(1), . . . , x(t)|x(0)) =
t�1Y

i=0

1
p
2⇡�2

e
�

(x(i+1)�x(i))2

2�2 (�.�)

We can think of this as a simple form of a path integral.
What happens if the increments are not Gaussian distributed? Suppose that

we generalize the model slightly, so that

�xt

i.i.d.
⇠ p(�x) w/ h�xi = µ , Var(�x) = �

2
, (�.��)

for somemore general distributionp(x). Fromthe central limit theorem(Eq. �.��
in Chapter �), we can conclude that for a broad range of distributions, x(t)will
approach the same Gaussian form as in Eq. (�.�) when the number of timesteps
t is su�ciently large�:

x(t) ⇡ �x0 +�x1 + . . .�xt�1 ⇡ Gaussian(µ · t, �
2
· t) (�.��)

This is a textbook application of the CLT.However, a fact that is less commonly
emphasized for sums like Eq. (�.��) is that the CLT can also apply locally for sub-
intervals of length �t � 1:

x(t) = �x0 + . . .+�x�t�1| {z }
⇡Gaussian(µ·�t,�2·�t)

+ . . .+�xt��t + . . .+�xt�1| {z }
⇡Gaussian(µ·�t,�2·�t)

. (�.��)

Thus, if we coarse-grain over some intermediate timescale �twith �t � 1 but
�t ⌧ t, we can rewrite our recursion as

x(t+ �t) ⇡ x(t) + Gaussian(µ · �t, �
2
· �t) , (�.��)

�How large will depend on the details of p(x), as we will explore in Problem � of Homework �
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or alternatively,

x(t+ �t) = x(t) + µ · �t+
p

�2�t · Zt| {z }
�x(t)

, (�.��)

where theZt are independent standardGaussians with hZti = 0 and hZ
2
t
i = 1.

This generates a sequence of positions x(0) ! x(�t) ! x(2 · �t) ! . . . x(t)
that is similar to the original model in Eq. (�.��), but evaluated at only a subset of
the original timepoints.

Notation: It is common to re-express the update rule in Eq. (�.��) using the
notation of a stochastic di�erential equation (SDE),

@x

@t
= µ|{z}

deterministic
part

+
p

�2 · ⌘(t)| {z }
stochastic part

(�.��)

(also known as a Langevin equation). The interpretation of Eq. (�.��) is that
the �rst term represents the deterministic contribution (i.e. the behavior of x(t)
in the absence of noise) while the second term represents the stochastic contri-
bution due to the Brownian noise term term ⌘(t). SDEs have subtle mathe-
matical properties if you take them too seriously.�. In this course, we will treat

�The di�culties rapidly become apparent if we try to calculate the “derivative” �f/�t using the recursion in
Eq. (�.��). The

p
�t scaling of the Zt term means that it will diverge when we divde by �t ! 0 (i.e., x(t) is not

even di�erentiable in the traditional sense). These di�culties are surmountable if we’re willing to generalize our
de�nition of a derivative; seeOksendal’s Stochastic di�erential equations: an introductionwith applications formore
details.
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the SDE notation in Eq. (�.��) solely as a notational shorthand for the series ex-
pansion in Eq. (�.��). This concrete de�nition will be su�cient to derive all the
results we’ll need here.

Universality.Using our recursion inEq. (�.��), we canwrite down a formula for
the probability of an arbitrary coarse-grained path x(0) ! x(�t) ! . . . x(t):

p(x(�t), . . . , x(t)|x(0)) ⇡

t
�t�1Y

i=0

1
p
2⇡�2�t

e
�

(x(i�t+�t)�x(i�t)�µ�t)2

2�2�t (�.��)

If we focus only on these coarse-grained timepoints (t = �t, 2�t, . . .), then the
probability of the path in Eq. (�.��) is identical to theGaussianmodel in Eq. (�.�)
— evenwhen the underlying distribution p(�x)was not Gaussian. This shows
that for a large class of jump distributions p(�x), the resulting random walks
have similar statistical properties when viewed over su�ciently long timescales
(t � 1 and �t � 1). We can represent this with a diagram,
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wheremany di�erentmicroscopicmodels correspond to the sameuniversality
class (de�ned to be a collection ofmicroscopicmodels + a particular limit). This
implies that we can use any of themicroscopicmodels to predict the behavior of
any of others in the same class on timescales �t � 1— a good choice is to use
the model that we can actually solve (e.g. the Gaussian model in this case).

Note that “universal” is a slight misnomer here. It’s not that the paths from
two distributions p1(�x) and p2(�x) are truly identical—they’re only similar
in the limit that the coarse-graining timescale �t is su�ciently large. In fact, we
expect to be able to tell them apart if we look at su�ciently short timescales (i.e.
�t ⇠ 1, or when the CLT no longer applies).

The concept of universality plays a central role in modern physics.� How-
ever, it is worth appreciating how di�erent it is from themore well-known “laws
of physics” that are taught in introductory physics classes. For example, a shift
from an inverse-squared law of gravity to an inverse-cubed law leads to qual-
itatively di�erent physics�. In contrast, our results above show that a similar-
looking change from |x|

2
! |x|

3 in the exponent of the Gaussian distribution
produces the same random paths at long times. Somewhat paradoxically, the
law of di�usion is so important in physics precisely because it is insensitive to
these microscopic details — it allows us to make quantitatively accurate predic-
tions for a range of experimental systems using simple toy models like Eq. (�.�)
(despite their obvious disconnect from reality). If we could show that a simi-
lar e�ect also emerges in evolutionary contexts, it would go a long way towards
addressing the questions we posed at the beginning of this section.

�.�.� Di�usion of mutation frequencies

Spatial di�usion comesupa lot inphysics. Thismakes sense: molecular timescales
are very fast, so coarse-graining over many microscopic events is often a good

�for a broader review, see H.E. Stanley, “Scaling, universality, and renormalization: Three pillars of modern
critical phenomena,”RevMod Phys, ��(�), S��� (����).

�see J Dorling, “Henry Cavendish’s deduction of the electrostatic inverse square law from the result of a single
experiment,” Studies in History and Philosophy of Science, Part A �.� (����): ���-���.
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approximation if we are interested in timescales relevant to proteins, cells, and
larger organisms. Howmight similar concepts apply in the context of evolution-
ary problems? The basic idea is somewhat similar— this time exploiting the fact
that evolutionary phenomena take place on very long timescales (much longer
than a single generation). This suggests that some di�usion-like behavior might
emerge when we coarse-grain over large numbers of generations.

We can start by writing the frequency trajectory from our serial dilution
model as a sum over the changes that occur during each daily cycle:

�ft ⌘ f(t+�t) � f(t) =
N2

N1 +N2
� f(t) , (�.��a)

whereN1 andN2 are de�ned as in Chapter �,

N2 ⇠ Poisson

✓
N 0 ·

f(t)es�t

1 � f(t) + f(t)es�t

◆
, (�.��b)

N1 ⇠ Poisson

✓
N 0 ·

1 � f(t)

1 � f(t) + f(t)es�t

◆
. (�.��c)

We can then write

f(t) = f(0) +�f0 +�f�t + . . .+�ft��t (�.��)

The primary di�erence from the simple randomwalk model in Eq. (�.��) is that
the mean and variance of�ft now depend on the current value of f(t):

h�fti ⌘ µ[f(t)] , Var[�ft] ⌘ �
2(f(t)) . (�.��)

This means that if we de�ne the coarse-grained increment,

�f(t) ⌘ �ft +�ft+�t + . . .�ft+�t��t , (�.��)

then we cannot directly apply the central limit theorem from Chapter �.
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However, as long as the individual increments (�ft) are small, we might
hope that f(t)would still be a good approximation for f(t+ i�t) in the near-
term— simply because there has not been enough time for large changes to ac-
cumulate. This motivates our basic approach: we wish to �nd a coarse-grained
time interval �t that is simultaneously (i) large enough that the central limit the-
orem could apply to the net change within a sub-interval, but (ii) small enough
that the mean and variance of the individual increments remain approximately
constant:

µ[f(t+ �t)] ⇡ µ[f(t)] , �
2[f(t+ �t)] ⇡ �

2[f(t)] (�.��)

We could then apply the central limit theorem within an interval to obtain,

�f(t) ⇡ Gaussian(µ[f(t)] · �t, �2[f(t)] · �t) , (�.��)

or

f(t+ �t) = f(t) + µ[f(t)] · �t+
p
�2[f(t)] · �t · Zt , (�.��)

which is a simple generalization of the classical randomwalkmodel in Eq. (�.��).
Our goal now is to understand whether (and under what conditions) this idea
actually works.

Our basic approach will rely on the self-consistency arguments and series
expansions that we introduced in Chapter �. We can break this argument into �
key steps. We will illustrate each step with the serial dilutionmodel in Eq. (�.��),
but the same approach can be used for other microscopic models as well.�

Step � (identify the relevant limits): Our argument relies on the individual
increments (�ft) being small, so we must �rst identify the parameter regimes
where thiswill be a goodapproximation. For the serial dilutionmodel inEq. (�.��),
we see that�ft will be small if the following two conditions are met:

�Wewill work through another example in Problem � of Homework �.
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(i) Themeans of the Poisson distributions de�ningN2 andN1 must be close
toN 0f(t) andN 0(1� f(t)), respectively. This will be true if the �tness
di�erences within a single cycle are su�ciently small:

s�t ⌧ 1 . (�.��)

(ii) The randomdraws from these Poissondistributionsmust be close to their
means (i.e., the random variables must be of the “Case �” form from Sec-
tion �.�.�). For a Poisson distribution, this will be true if the means them-
selves are su�ciently large:

N 0f(t) � 1 , N 0(1 � f(t)) � 1 , (�.��)

which implies that a large number of cells of each type are expected to sur-
vive the dilution step.� It is often convenient to combine these conditions
into a single expression:

N 0f(t)[1 � f(t)] � 1 , (�.��)

which will be valid in the same limits.

When the conditions in Eqs. (�.��) and (�.��) are met, the random value of
N2/(N2 + N1) will be close to the original frequency f(t), and the increment
�ft will be small.

Step � (calculate the leading-order behavior for � cycle): Using the limits
we identi�ed above, we can calculate the leading-order contributions to µ[f(t)]
and�2[f(t)] for a single dilution cycle. The algebra becomes somewhat tedious,
but the basic idea follows from the series expansions discussed in Chapter �.

�If you’re worried about what happens when the mutant or wildtype is represented by just a few cells — you
should be! We will talk about this later when we discuss low-frequency dynamics and asymptotic matching.
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When s�t ⌧ 1, we can Taylor expand the argument of the Poisson distri-
bution to obtain:

fe
s�t

1 � f + fes�t
⇡

f [1 + s�t+ . . .]

1 � f + f [1 + s�t+ . . .]

⇡ f + s�tf(1 � f)| {z }
leading-order contribution

+ h.o.t. (�.��a)

where we are using f as a shorthand for f(t). A similar expansion for the wild-
type frequency yields

1 � f

1 � f + fes�t
⇡ 1 � f + �s�tf(1 � f)| {z }

leading-order contribution

+ h.o.t. (�.��b)

Similarly, whenN 0f andN 0(1� f) are large, we can use the Gaussian approx-
imation to the Poisson distribution to write:

N2 ⇡ N 0[f + s�tf(1 � f)] +
q

N 0fZ2| {z }
leading-order contributions

+h.o.t. (�.��a)

and

N1 ⇡ N 0[1 � f �s�tf(1 � f)] +
q

N 0(1 � f)Z1| {z }
leading-order contributions

+h.o.t. (�.��b)

whereZ1 andZ2 are independent standard Gaussians, and where we have again
kept only the leading-order contributions in the (joint) limit that s�t is small
andN 0f(t) andN 0(1� f(t)) are large. We can add these expressions to calcu-
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late the total population size at the beginning of the next cycle:

N1 +N2 ⇡ N 0[1 � f � s�tf(1 � f)] +
q
N 0(1 � f)Z1

+ [f + s�tf(1 � f)] +
q

N 0fZ2

⇡ N 0 +
q
N 0(1 � f)Z1 +

q
N 0fZ2 (�.��)

which is independent of s as expected.� We can then take the ratio betweenN2
andN1 + N2 to calculate the frequency of the mutant at the beginning of the
next cycle:

f(t+�t) ⇡

f + s�tf(1 � f) +
q

f
N0

Z2 + . . .

1 +
q

1�f
N0

Z1 +
q

f
N0

Z2 + . . .

⇡ f(t) + s�tf(1 � f) +

s
f

N0

Z2 � f

s
1 � f

N0

Z1 � f

s
f

N0

Z2 + . . .

⇡ f(t) + s�tf(1 � f) +

s
(1 � f)2f

N0

Z2 �

s
f 2(1 � f)

N0

Z1 + . . . , (�.��)

We can use the Gaussian sum rule in Eq. (�.�) to combine the last � terms into a
single random variable,

s
(1 � f)2f

N 0

Z2 �

s
f 2(1 � f)

N 0

Z1 =

s
f(1 � f)

N 0

Zt , (�.��)

whereZt is a new standard Gaussian. This yields an approximate expression for
the frequency change over a single cycle

�ft ⇡ s�t · f(t)[1 � f(t)]| {z }
µ[f(t)]

+

vuuut
f(t)[1 � f(t)]

N 0| {z }
�2[f(t)]

· Zt (�.��)

�In our serial dilution model, selection can only change the relative frequencies of the strains, since the bottle-
neck size is �xed by the experimenter.
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that is valid in the limit that s�t ⌧ 1 andN 0f(t)[1 � f(t)] � 1.

Step � (add up contributions overmultiple cycles): Ifwe assume thatf(t+
k�t) ⇡ f(t)within a coarse-grained time interval, we can add up the contribu-
tions from the individual daily cycles in Eq. (�.��) to obtain:

f(t+ �t) = f(t) +�ft + . . .+�ft+�t��t

⇡ f(t) + sf(t)[1 � f(t)]�t+

s
f(t)[1 � f(t)]�t

N 0 · �t
· Zt (�.��)

At this point, it is common to de�ne a set of e�ective parameters

Ne ⌘ N 0 · �t , se ⌘ s , (�.��)

such that Eq. (�.��) can be written in the standard form,

f(t+ �t) = f(t) + sef(t)[1 � f(t)]| {z }
natural selection

+

s
f(t)[1 � f(t)]�t

Ne

· Zt

| {z }
genetic drift

, (�.��)

which decomposes the change in frequency into a deterministic portion from
natural selection and a stochastic component due to genetic drift. Using the
SDE notation in Eq. (�.��), this can be equivalently written as

@f

@t
= sef(1 � f)| {z }

natural selection

+

s
f(1 � f)

Ne

· ⌘(t)

| {z }
genetic drift

. (�.��)

Step � (check self-consistency): Finally, we have to check that the various
assumptions we made along the way are self-consistent with each other.
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To verify that the means and variances of the �ft are constant within a
coarse-grained time interval, we can check that this holds at the two endpoints:

µ[f(t+ �t)] ⇡ µ[f(t)] , �
2[f(t+ �t)] ⇡ �

2[f(t)] (�.��)

Using the forms for µ[f(t)] and �2[f(t)] derived above, we see that the relative
error will be small provided that

�f ⌧ f(t) , �f ⌧ 1 � f(t) =) �f ⌧ f(t)[1 � f(t)] (�.��)

Using the update rule in Eq. (�.��), we see that this condition will be satis�ed if

�t ⌧ 1/s , �t ⌧ Nef(1 � f) (�.��)

Since the coarse-grained timescale �tmust be at least as large as a single cycle, we
must also have

�t & �t (�.��)

We see that both conditions can be satis�ed if the �tness di�erences are small
(se ! 0) and the population sizes are large (Ne ! 1), while their product
Ne·se can take on any value between �1 and 1. This is known as the dif-
fusion limit of population genetics. When these conditions hold, the coarse-
grained dynamics of f(t) can be described by the stochastic di�erential equation
Eq. (�.��).

Universality. We demonstrated this result for our simple serial dilution model
in Chapter �. With a similar amount of work, one can show that it holds for
a number of other microscopic models, including the Wright-Fisher, Moran,
and chemostat models above. This suggests that the di�usion limit captures the
behavior of a broader universality class:
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which applieswhenever the coarse-graineddynamics canbedescribedbyEq. (�.��)
for an appropriate� pair of constants se andNe. Thismodel is sometimes known
as theWright-Fisher di�usion process orKimura’s di�usion model. (We
might also call it the single-locus di�usion model to distinguish it from the
longer-genomes we will analyze later in the course.) These dynamics constitute
a di�erent universality class than the spatial di�usion model in Eq. (�.��), since
the mean and variance have a di�erent functional dependence on f(t). Thus,
despite their visual similarities, we will see that mutation trajectories will behave
in fundamentally di�erent ways than the trajectories of di�using particles. Un-
derstanding these di�erences will be a central focus of the next few lectures.

Similar to the randomwalk example above, the microscopic models that fall
�Note that these e�ective parameters canhave a complex relationshipwith the actual population sizes and�tness

bene�ts of the underlying microscopic model. Equation (�.��) provides the mapping for our simple serial dilution
model, but this connectionmust generally be determined on a case-by-case basis by repeating the calculation above.
In practice, since the microscopic parameters are usually unknown, the e�ective parameters are often treated as an
empirical �tting parameter.
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into theWright-Fisher di�usion class are not equivalent to each other in general;
they are only equivalent when we coarse-grain over su�ciently long timescales
and large numbers of individuals. The Wright-Fisher di�usion is not the only
universality class that arises in this limit, but it is a common one (and arguably
the simplest). This provides a partial explanation for why toy models like the
Wright-Fisher model (or their generalizations) can sometimes be useful for de-
scribing real data, despite their obvious departures from reality. It does so by
changing the question from “is theWright-Fisher model an accurate representa-
tion of the real population?” to “does the real population fall into the same uni-
versality class as the Wright-Fisher model?” Our coarse-graining derivation also
shows that there are inherent limitations to this approach: we naturally expect
the di�usion approximation to break downon short timescales, when the details
of the underlying birth-and-death process start to become important.

Who is approximatingwhom? This last observation raises an importantpoint.
In the population genetics literature, the di�usion model in Eq. (�.��) is some-
times framed as an approximation to the Wright-Fisher model, and that “exact”
results for the latter would be more desirable. Our universality diagram above
illustrates how this might not provide many practical bene�ts when it comes to
making connectionswith data. In the regimeswhere the di�erences between the
Wright-Fisher model and the di�usion process are important, it is likely that the
di�erences between theWright-Fishermodel and the biology will be equally im-
portant as well. In these cases, a more detailed model of the speci�c population
will often be preferable to an exact solution of the Wright-Fisher model. This
is an important consideration whenever we wish to study aspects of the biology
that deviate from the di�usion limit.

�.�.� Traditional derivation of theWright-Fisher di�usion

The derivation above is somewhat di�erent from the traditional derivation of
the di�usion limit in population genetics. I think the coarse-graining version
places a greater emphasis on the underlying physical assumptions, and it is often
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easier to extend to more complex scenarios (as we’ll see on Homework �). Nev-
ertheless, it is still worth presenting the traditional derivation for completeness,
since it is often referenced in the literature.

The standard derivation starts from a general continuous-stateMarkov pro-
cess,

x0 ! x1 ! . . . ! xt , (�.��)

characterized by the single step transition probability:

Pr[xi ! xi+1] = p1(xi+1|xi) . (�.��)

We can then consider the probability density, p(x, t|x0), which represents the
probability of observing the system in position x at time t, given that it started
at positionx0 at t = 0. By considering all the positions in the previous timestep,
we can derive a recursive formula for this probability distribution,

p(x, t+ 1|x0) =

Z
p1(x|x

0)p(x0
, t|x0) dx

0 (�.��)

=

Z
p1(x|x � �x)p(x � �, t|x0) d�x , (�.��)

where we have changed variables in the last line from the previous position (x0)
to the jump size (�x = x � x

0). If we expand this expression to �rst order in
the time increment and second order in the jump size��, we can obtain a partial
di�erential equation for the probability density,

@p(x, t|x0)

@t
= �

@

@x
[µ(x) · p(x, t|x0)] +

@
2

@x2


�

2(x)

2
· p(x, t|x0)

�
(�.��)

��The details are somewhat technical (and not particularly enlightening). They are presented in the appendix at
the end of this chapter.
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where the functions µ(x) and �2(x) are de�ned by

µ(x) ⌘

Z
�x · p1(x+�x|x) d�x

�
2(x) ⌘

Z
�x

2
· p1(x+�x|x) d�x

(�.��)

This is often known as the Fokker-Planck equation (or the forward equa-
tion), and it is equivalent to the Langevin equation:

@x

@t
= µ(x) +

p
�2(x) · ⌘(t) (�.��)

or the recursive update rule:

x(t+ �t) = x(t) + µ(x)�t+
p

�2(x)�t · Zt (�.��)

In the case of the Wright-Fisher model (or our serial dilution model), the mean
and variance are given by Eq. (�.��), so the Fokker-Planck equation becomes

Single-locus model (Fokker-Planck equation)

@p(f, t)

@t
= �

@

@f
[sef(1 � f)p(f, t)]

| {z }
natural selection

+
@

2

@f 2


f(1 � f)

2Ne

· p(f, t)

�

| {z }
genetic drift

(�.��)

This is sometimes known asKimura’s di�usion equation. It is equivalent to
the Langevin formulation in Eq. (�.��):
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Single-locus model (Langevin equation)

@f

@t
= sef(1 � f)| {z }

selection

+

s
f(1 � f)

Ne

· ⌘(t)

| {z }
genetic drift

(�.��)

This is shorthand for the in�nitesimal update rule:

f(t+ �t) = f(t) + sf(1 � f)�t| {z }
selection

+

r
f(1 � f)�t

N
· Zt

| {z }
genetic drift

(�.��)

�.�.� Incorporating spontaneous mutations

It is straightforward to repeat the derivation in Section �.�.� to allow for spon-
taneous mutations. We leave it as an exercise to show that the resulting SDE is
given by

@f

@t
= sf(1 � f)| {z }

selection

+ µ(1 � f) � ⌫f| {z }
mutation

+

r
f(1 � f)

N
· ⌘(t)

| {z }
genetic drift

(�.��)

to lowest order in s, µ, ⌫, and 1/N .
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�.� Appendix

�.�.� Traditional derivation of the Fokker-Planck equation

Toderive the Fokker-Planck equation fromEq. (�.��), it is useful to consider the
generating function of the probability density,

H(z) ⌘

Z
e
�zx

p(x, t|x0) dx (�.��)

By integrating both sides of our recursion relation, we have

H(z, t+ 1) =

Z
dx d�xe

�zx
p(x � �x, t)p1(x, x � �x)

(de�ne y = x � �x) =

Z
dy d�x e

�zy
e
�z�x

p(y, t)p1(y +�x|y)

(relabel y ! x) =

Z
dy d�x e

�zy
e
�z�x

p(y, t)p1(y +�x|y)

(�.��)

We can thenTaylor expand the integrand in the limit that�x is small. The right
hand side becomes:

⇡

Z
dx d�x · e

�xz


1 � z�x+

(z�x)2

2

�
p(x, t)p1(x+�x|x)

=

Z
dxe

�zx
p(x, t)

Z
d�x


1 � z�x+

(z�x)2

2

�
p1(x+�x|x)

=

Z
dxe

�zx


1 � zµ(x) +

z
2
�

2(x)

2

�
p(x, t) (�.��)

where we have used the de�nitions of µ(x) and �2(x) in Eq. (�.��). Integrating
by parts then yields

=

Z
dxe

�zx

⇢
p(x, t) �

@

@x
[µ(x)p(x, t)] +

@
2

@x2


�

2(x)

2
p(x, t)

��
(�.��)
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Thus, if p(x, t) satis�es,

p(x, t+ 1) � p(x, t)| {z }
⇡@tp(x,t)

= �
@

@x
[µ(x)p(x, t)] +

@
2

@x2


�

2(x)

2
p(x, t)

�
, (�.��)

thenH(z, t) [and therefore p(x, t)] will satisfy the original recursion relation in
Eq. (�.��).
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