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Chapter �

Introduction

�.� Preface

The goal of this course is to provide an introduction toquantitative evolutionary
modeling through the lens of statistical physics. Why is such a course necessary,
and why should you take it?

At its core, physics is thequantitative studyof howmatter and energy change
over time. In the living world, many of these changes are driven by Darwinian
evolution,which acts onpopulations of organisms and the information encoded
in their genomes. The studyof this process—oftenknownas evolutionary dy-
namics or population genetics—has become one of the fastest growing sub-
�elds of biophysics, which is itself one of the fastest growing areas of physics�.
Technological advances in our ability to read and write genomes are fueling a
lot of exciting progress in this area, in which interactions between quantitative
theory and experimental data are playing an important role. Physicists and en-
gineers are uniquely poised to contribute at this interface, given their extensive
training in both theoretical and applied problems.

Unfortunately, it can be hard to �nd a dedicated set of courses where one
�See the recent report, Physics of Life, from the National Academy of Sciences, https://nap.nationalac

ademies.org/resource/26403/interactive/
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can learn this material, despite the fact that it’s now a relatively established sub-
�eld. This is particularly true for evolutionary biology and population genet-
ics, where the underlyingmathematical models are su�ciently complicated that
they are rarely covered – even in graduate-level courses – in the traditional biol-
ogy curriculum. There are lots of great courses in population genetics that are
now available �, but they tend to be geared toward “consumers” of population
genetic methods, and assume that students have little familiarity with the math-
ematical tools (e.g. PDEs, series expansions, probability distributions) that are a
core part of the undergraduate physics curriculum. As a result, students are of-
ten left to comb through the primary literature, which can be quite challenging
given the long history of the �eld.

This course is an attempt to �ll this gap. It aims to provide a mathemat-
ically rigorous but biologically naive introduction to the �eld of evolutionary
dynamics and genomics. It is targeted both to physicists and engineers who are
curious about evolution, andwant to get up to speed onmodern theoretical and
experimental approaches, as well as biologists who might want a deeper under-
standing of the theoretical tools we can use to model evolution mathematically.
The course covers topics ranging from the foundations of theoretical popula-
tion genetics to experimental evolution in laboratory microbes, while empha-
sizing techniques like order-of-magnitude estimation and themethod of succes-
sive approximations. For physics students, it might also provide a �rst exposure
to non-equilibrium approaches in statistical physics (e.g. stochastic di�erential
equations and continuous-timebranchingprocesses)whichhavewidespread ap-
plications beyond this course. As we will see throughout the course, evolution-
ary phenomena will turn out to provide a fantastic setting in which to explore
many of these ideas.

In the remainder of this section, we will provide a brief overview of what
we mean by “quantitative evolutionary dynamics”, and start to introduce some
of the key questions that we will be interested in during the course. The next

�One of my favorites is Graham Coop’s “Population and Quantitative Genetics” course, which is available on-
line: https://github.com/cooplab/popgen-notes/releases.
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two chapters will quickly review some of the mathematical and biological back-
ground, and then we’ll start with or �rst model of evolution in Chapter �.

�.� Evolution as a statistical mechnical process

What do we even mean by the phrase “quantitative evolutionary dynamics”?
Traditionally, I think a lot of us are used to thinking about evolution as a his-
torical process – that is, the story of how life came to be the way it is today.

Evolution as an organizing principle

In this view, a major goal is to �gure out what these historical relationships are,
what happened at the major transitions, and so on.

We’re also probably used to thinking about evolution as the world’s best op-
timization scheme, which is able to generate some exquisitely�ne-tuned biologi-
cal structures when compounded overmillions and billions of years. Here is one
of my favorite examples that you might have heard about from Planet Earth:
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Evolution can produce exquisitely fine-tuned structures  
over long (geological) timescales

Ophiocordyceps unilateralis

Constrained by biological mechanisms & historical contingency
not clear how physics could help predict this

“Life, uh, finds a way…”

The Jurassic Park  
Theory of Evolution

This is a picture of a fungus namedCordyceps, which infects a particular species
of ant, and manages to control the ant’s behavior by taking over its brain.� It
makes the ant climb onto a leaf that is 25 ± 2cm o� the ground, and then a
fruiting body bursts out of the ant’s head, in order to rain down spores onto the
generation of ants.

This behavior is really �ne-tuned: if the leaf is a bit higher up or a bit far-
ther down, then the temperature and humidity are such the spores don’t grow
as well. This particular species of fungus also has di�culty growing in closely re-
lated species of ants. Evolution provides us with a story for how this �ne-tuned
behavior could arise — something we might call the “Jurassic Park” Theory
of Evolution: life just �nds a way.

At the same time, this process seems to be entirely constrained by the precise
biological mechanisms that allow this sort of mind control to occur, and the

�Ed Yong wrote a nice popular science article about this species for The Atlantic: https://www.theatlan
tic.com/science/archive/2017/11/how-the-zombie-fungus-takes-over-ants-bodies-to-c
ontrol-their-minds/545864/
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chance events that allowed it to happen for this particular pair of species, andnot
others. It doesn’t seem like physics would be particularly helpful for predicting
this sort of behavior.

However, if we turn our attention to microbial organisms, we’ll notice that
not all of evolution involves these micraculous innovations that take place over
geological time. Instead, there are many smaller-scale examples of evolution that
take place on human-relevant timescales— some of which have important prac-
tical consequences that we might want to predict or control.

Here is just one real-world example, showing the evolutionof drug resistance
in a cohort of HIV patients during a clinical trial.
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Evolution can also occur on human-relevant timescales  
in fast growing microbial populations

Feder et al (PLoS Genetics, 2021)

Each one of the colored lines represents a di�erent patient. So we can see that all
�� or so acquired resistance to this particular drug within about �� weeks. The
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initial HIV strains were not resistant to begin with, so this means that in each
host, one of the billion or so viral particles acquired a random mutation that
allowed it to evade the drug, and this its descendants to rapidly take over the
population.

At some level, this process is just as randomas the zombie ant example above.
It still relies on a random mutation occurring in a single random individual,
which just happens to provide resistance to this particular drug. In this case,
however, we can see that these random events lead to much more repeatable be-
havior at the population level — enough that we can start asking some quanti-
tative questions: For example, is there something special about the two patients
at the bottom that caused them to acquire drug resistance anomalously late? Or
is this just the typical variation we’d expect in a random ensemble of �� patients?

There are many other examples like this. This is a genealogical tree showing
the worldwide evolution of the in�uenza virus over the last �� years, as it evolves
to evade the collective e�ects of all of our immune systems.
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genetic linkage on individual alleles10. This mode of evolution is well
known from laboratory evolution experiments with microbial and viral
populations35,36.

Clonal interference can explain the observed regional fitness differ-
ences between influenza A/H3N2 clades as an effect of multiple bene-
ficial mutations coexisting in a population: individual antigenic mutations
originating in east and southeast Asia have the same average effect as
mutations originating elsewhere, but they occur in lineages that have
accumulated more previous beneficial mutations in their recent past.

Discussion
We have developed a dynamical model that successfully predicts the
year-to-year evolution of individual influenza clades, based on epitope

and non-epitope characteristics of their HA gene. Our general model is
applicable whenever host–pathogen interactions—in particular, anti-
genic selection—generate continual adaptive evolution of a predominantly
asexual population. Our results highlight the determinants of predict-
ive power: we need sufficient information on the genotypic and pheno-
typic basis of antigenic and mutational-load fitness components, and
model training requires a sufficiently deep and unbiased strain sample.
This suggests that predictions can be improved by integrating diverse
genotypic and phenotypic data, which include free-energy effects of spe-
cific mutations13, haemagglutination inhibition data12, the genomics of
neuraminidase8 and the geographical distribution of strains18. Further-
more, the prediction scheme can be extended from population fre-
quencies to absolute growth rates and population numbers, which
includes the dynamics of yearly incidence rates23. Together, we expect
an improved understanding of selective effects for specific mutations
from limited strain data. This is key to evolutionary predictions for other
influenza variants, including the potentially pandemic avian A/H5N1
and A/H7N9 lineages.

In a broader context, our model establishes a direct link between
population genetics and epidemiology that is to be explored more
comprehensively in future work. This link is the strain-specific fitness
function of equation (2), which governs the dynamics of infected host
individuals in an SIR framework. Strain fitness depends not only on
antigenic characteristics, but also on other phenotypes encoded in
genetically linked sequence. We expect that this coupling between anti-
genic adaptation and conservation of other functions is not limited to
influenza, but is a generic feature of fast-adapting pathogens. Therefore,
the epidemiology of such systems should be based on the ensemble of
phenotypes linked to the adaptive process.

Model

Actual
vaccine

Posterior

1995 2000 2005 2010

0

5

10

15

20

Ep
ito

pe
 d

is
ta

nc
e

Season, t 

2000

2002

2004

2006

2008

2010

1994

1996

1998

2012

2001

2003

2005

2007

2009

2011

1995

1997

1999

Figure 3 | Vaccine selection.
Optimal vaccine strains predicted by
our model (diamonds) and actual
vaccine strains used in the Northern
Hemisphere27 (squares, listed in
Supplementary Information) are
compared to posterior cross-
immunity centre-of-mass strains
(bullets) for the winter seasons from
1994 to 2012. Model predictions are
obtained by maximizing the
predicted cross-immunity overlap
between the vaccine strain and the
circulating strains, which amounts to
maximizing the predicted reduction
of infections (see text and Methods).
Insert: yearly epitope amino acid
distances of the model-selected
vaccine strain (diamonds) and the
actual vaccine strain (squares, update
years marked by filled squares) to the
posterior cross-immunity centre-of-
mass strain.
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Figure 4 | Adaptation map of influenza. The fitness flux Wn tð Þ, computed
from the fitness model (2) and observed frequency changes, is shown for 234
clades on a tree between 2003 and 2008; see Methods for the definition and
Extended Data Fig. 3a for an illustration of fitness flux. Top graph: strains
within these clades are ordered by year and, within each year, by mutational
distance to the last common ancestor. The mean cumulative fitness flux W tð Þ is
shown as dashed line; see also Extended Data Fig. 3b. This map displays a
travelling fitness flux wave. Bottom graph: the same map is shown with
nonsynonymous epitope mutations marked by green triangles; these mutations
are mostly beneficial7,9,10. This gives evidence of clonal interference: successful
clades are driven to fixation by multiple beneficial mutations (large green
triangles; origination and fixation of one such clade are marked by arrows),
whereas other beneficial mutations are driven to loss (small green triangles).
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Example: antigenic evolution of the global influenza pop’n

Can we forecast which strains are 
likely to dominate next year?

(vaccine selection)

Luksza and Lassig (Nature, 2014)

We could construct an analogous (and much bigger tree) for SARS-CoV� over
the last few years�. A big challenge is that every year, we have to choose one or
two of these strains to use to serve as the basis for that season’s in�uenza vaccine.
So something wemight want to know— and which researchers are actively try-
ing to do right now— is to determine whether we can use real-time genome se-
quencing to forecast which strains are likely to dominate in the next �u season,
and to use this information to inform vaccine selection.

Here’s another example, showing the evolutionary processes that occur in
our immune cells as they respond to antigenic pressure.

�You can play around with these trees yourself using the NextStrain tool: https://nextstrain.org/nco
v/gisaid/global/6m
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Example: somatic evolution of immune repertoires
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FIG. 1: A�nity maturation forms B-cell lineages. (A) Schematic of B-cell a�nity maturation and lineage formation. The naive
immune repertoire consists of a diverse set of B-cell receptors, generated by gene rearrangement (VDJ recombination) and junctional
sequence insertion and deletion (distinct colored cells in the box). A�nity maturation with somatic hypermutations and selection for
strong binding of BCRs to antigens forms lineages of BCRs stemmed from a germline progenitor, shown by three growing lineages in this
figure. (B) Examples of B-cell lineages reconstructed from the heavy chain sequences of BCR repertoires in HIV patients (see SI). The
distance between the nodes along the horizontal axis indicates their sequence hamming distance. The nodes are colored according to the
time they were sampled from a patient over the period of � 2.5 yrs. (C) Examples of a productive (left) and unproductive (right) B-cell
lineage reconstructed from the heavy chain repertoire of a healthy individual sampled at a single time point (SI).

evolving virus.
Reconstructed lineage trees show a skewed and asym-

metric structure, consistent with rapid evolution under
positive selection (see Fig. S1A) [20]. To quantify these
asymmetries, we estimated two indices of tree imbalance
and terminal branch length anomaly. In both HIV pa-
tients and healthy individuals, we observe a significant
branching imbalance at the root of the BCR lineage trees,
indicated by the U-shaped distribution of the sub-lineage
weight ratios (see SI), in contrast to the flat prediction
of neutral evolution, calculated from Kingman’s coales-
cent (Fig. 2A). Moreover, we observe elongated termi-
nal branches in BCR trees compared to their internal
branches, with the strongest e↵ect seen in trees from
HIV patients, again in violation of neutrality (Fig. 2B,
Fig. S1). These asymmetric features of BCR trees are
clear signs of intra-lineage positive selection. However,
they only reflect the history of lineage replication and
give limited insight into the mechanisms and dynamics of
selection. For instance, tree asymmetry is also observed
in unproductive BCR lineages, which lack any immuno-
logical function but are carried along with the productive
version of the recombined gene expressed on the other
chromosome (Fig. 2A,B).

To characterize the selection e↵ect of mutations in
more detail, we evaluate the spectrum of mutation fre-
quencies in a lineage, known as the site frequency spec-
trum (SFS). We evaluate the SFS separately for synony-

mous and nonsynonymous mutations in di↵erent regions
of BCRs (Fig. 2C, Fig. S2). We see a signifiant up-
turn of SFS polarized on non-synonymous mutations in
pathogen-engaging CDR3 regions, consistent with rapid
adaptive evolution [20], and in contrast to monotonically
decaying SFS in neutrality (SI). This signal of positive
selection is strongest in HIV patients with an order of
magnitude increase in the high end of the spectrum, sug-
gesting that the BCR population rapidly adapts in HIV
patients.

To understand the dynamics and fate of these adaptive
mutations, we use the longitudinal nature of the data
to analyse the temporal structure of the lineages. We
estimate the likelihood that a new mutation appearing
in a certain region of the BCR reaches frequency x

at some later time within the lineage (Fig. 3A), and
evaluate a measure of selection g(x) as the ratio of this
likelihood between non-synonymous and synonymous
mutations [21] (SI). At frequency x = 1 (i.e., substitu-
tion), this ratio is equivalent to the McDonald-Kreitman
test for selection [22]. Generalizing it to x < 1 makes
it a more flexible measure applicable to the majority of
mutations that only reach intermediate frequencies. A
major reason why many beneficial mutations never fix in
a lineage is clonal interference, whereby BCR mutants
within and across lineages compete with each other [7].
To quantify the prevalence of clonal interference, we also

Nourmohammad et al (MBE, 2019)
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FIG. 1: A�nity maturation forms B-cell lineages. (A) Schematic of B-cell a�nity maturation and lineage formation. The naive
immune repertoire consists of a diverse set of B-cell receptors, generated by gene rearrangement (VDJ recombination) and junctional
sequence insertion and deletion (distinct colored cells in the box). A�nity maturation with somatic hypermutations and selection for
strong binding of BCRs to antigens forms lineages of BCRs stemmed from a germline progenitor, shown by three growing lineages in this
figure. (B) Examples of B-cell lineages reconstructed from the heavy chain sequences of BCR repertoires in HIV patients (see SI). The
distance between the nodes along the horizontal axis indicates their sequence hamming distance. The nodes are colored according to the
time they were sampled from a patient over the period of � 2.5 yrs. (C) Examples of a productive (left) and unproductive (right) B-cell
lineage reconstructed from the heavy chain repertoire of a healthy individual sampled at a single time point (SI).

evolving virus.
Reconstructed lineage trees show a skewed and asym-

metric structure, consistent with rapid evolution under
positive selection (see Fig. S1A) [20]. To quantify these
asymmetries, we estimated two indices of tree imbalance
and terminal branch length anomaly. In both HIV pa-
tients and healthy individuals, we observe a significant
branching imbalance at the root of the BCR lineage trees,
indicated by the U-shaped distribution of the sub-lineage
weight ratios (see SI), in contrast to the flat prediction
of neutral evolution, calculated from Kingman’s coales-
cent (Fig. 2A). Moreover, we observe elongated termi-
nal branches in BCR trees compared to their internal
branches, with the strongest e↵ect seen in trees from
HIV patients, again in violation of neutrality (Fig. 2B,
Fig. S1). These asymmetric features of BCR trees are
clear signs of intra-lineage positive selection. However,
they only reflect the history of lineage replication and
give limited insight into the mechanisms and dynamics of
selection. For instance, tree asymmetry is also observed
in unproductive BCR lineages, which lack any immuno-
logical function but are carried along with the productive
version of the recombined gene expressed on the other
chromosome (Fig. 2A,B).

To characterize the selection e↵ect of mutations in
more detail, we evaluate the spectrum of mutation fre-
quencies in a lineage, known as the site frequency spec-
trum (SFS). We evaluate the SFS separately for synony-

mous and nonsynonymous mutations in di↵erent regions
of BCRs (Fig. 2C, Fig. S2). We see a signifiant up-
turn of SFS polarized on non-synonymous mutations in
pathogen-engaging CDR3 regions, consistent with rapid
adaptive evolution [20], and in contrast to monotonically
decaying SFS in neutrality (SI). This signal of positive
selection is strongest in HIV patients with an order of
magnitude increase in the high end of the spectrum, sug-
gesting that the BCR population rapidly adapts in HIV
patients.

To understand the dynamics and fate of these adaptive
mutations, we use the longitudinal nature of the data
to analyse the temporal structure of the lineages. We
estimate the likelihood that a new mutation appearing
in a certain region of the BCR reaches frequency x

at some later time within the lineage (Fig. 3A), and
evaluate a measure of selection g(x) as the ratio of this
likelihood between non-synonymous and synonymous
mutations [21] (SI). At frequency x = 1 (i.e., substitu-
tion), this ratio is equivalent to the McDonald-Kreitman
test for selection [22]. Generalizing it to x < 1 makes
it a more flexible measure applicable to the majority of
mutations that only reach intermediate frequencies. A
major reason why many beneficial mutations never fix in
a lineage is clonal interference, whereby BCR mutants
within and across lineages compete with each other [7].
To quantify the prevalence of clonal interference, we also

Can we guide the evolution of
specific antibodies with the 
right vaccination strategy?

In this case, wemight want to �gure out whether we can guide our immune sys-
tem to evolve a particular desired antibody over another, by designing the right
vaccination cocktail.

Cancer is another example. This is fundamentally an evolutionary disease,
in which some of our cells acquire a sequence of mutations that allow them to
proliferate out of control.
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Example: somatic evolution of cancer tumors

Nik-Zainal et al (Cell, 2012)

among different subclones within the cancer. Among these
genomes, there is also diversity in the number of distinct sub-
clones evident by this analysis. For example, PD4192a shows
strong evidence on the Battenberg analysis for a subclone of
40%–50% of tumor cells with regional differences in copy
number from other subclones across 10–12 chromosomes.
Interestingly, this is matched by a discrete peak of point muta-
tions in 40%–50% of tumor cells (Figure S7C). In contrast,
many other genomes, such as PD4086a and PD3890a, show
evidence for several distinct levels of subclonality across the
genome. For three of these samples, we can apply similar

(B) Distribution of clonal and subclonal mutations for three representative cancers. The empiric histogram of mutations is shown in pale blue, with the fitted

distribution and 95% posterior intervals as dark green lines.

(C) Subclonal copy number variation for the 20 breast cancer genomes, estimated by using the Battenberg algorithm. The height of each bar reflects the esti-

mated copy number, and segments are colored by whether they show no subclonal variation (gray) or the estimated frequency of the minor subclone at the given

region (green to yellow to brown).
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(black stars), which produce clonal expansions. These

driver mutations occur only infrequently in long-lived line-

ages of cells, which passively accumulate manymutations

without expansion.

reasoning as used for PD4120a to reconstruct
the phylogenetic tree of the cancer (Figure S8).
In summary, these data indicate that a con-

siderable proportion of somatic genetic varia-
tion in these 20 genomes is found in only
a fraction of tumor cells. There is heterogeneity
among different cases, but as a general rule,
there is always a dominant subclonal lineage
separated from the most-recent common
ancestor by several hundreds to thousands of
mutations.

DISCUSSION

A Model of Breast Cancer Development
From the analyses described here, we can begin
to understand the dynamics of breast cancer
development (Figure 7). A key landmark in this
evolution is the appearance of the most-recent
common ancestor—the cell that has the full
complement of somatic mutations found in all
tumor cells. All extant cancer cells in the sample
analyzed can trace a genealogy back to the
fertilized egg through this common ancestor,
and its emergence demarcates the split in the
phylogenetic tree from the shared trunk to the
branches of divergent subclones. Our data
consistently indicate that the most-recent
common ancestor appeared surprisingly early
in molecular time, or, expressed another way,
much of molecular time is spent driving subclo-
nal diversification and evolution among the

nascent cancer cells. This is different to what is observed for
acute myeloid leukemia, where the proportion of mutations
that are subclonal is relatively small (Ding et al., 2012).
Before the appearance of the most-recent common ancestor,

much oncogenic genetic change has accumulated in the lineage.
Many of the tumors studied here have several driver mutations
that are found in all tumor cells—all PIK3CA and TP53mutations,
all ERBB2, MYC, and CCND1 amplifications, all somatic loss
of the wild-type BRCA1 and BRCA2 alleles among these 21
cancers can be placed unequivocally on the shared trunk of
the phylogenetic tree. Chromosomal instability appears in

Cell 149, 994–1007, May 25, 2012 ª2012 Elsevier Inc. 1005
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Figure 3. Reconstructing the Evolution of PD4120a
(A) Distribution of clonal and subclonal mutations phased onto specific chromosomes. The empiric histogram of mutations is shown in pale blue, with the fitted

distribution and posterior intervals as dark green lines.

(B) Allele fractions for pairs of subclonal mutations that are found on separate branches of the phylogenetic tree, by virtue of no sequencing read evincing both

mutations together. Error bars represent the 95% confidence intervals for the observed fractions.

(C) Allele fractions for pairs of subclonal mutations found in the same subclone, where one occurred temporally later than the other. Error bars represent the

95% confidence intervals for the observed fractions.

(D) Reconstruction of the phylogenetic tree for PD4120a. The thickness of the branches reflects the proportion of tumor cells comprising that lineage. The length

of the branches reflects the number of mutations specific to that lineage.

Cell 149, 994–1007, May 25, 2012 ª2012 Elsevier Inc. 999

• How long does it take for cancer to emerge? 1 yr? 1000yrs? 

• How rapidly do tumors acquire resistance to treatment?

In this case, we might want to know things like how long we expect it to take
for a particular cancer to emerge in a given individual. From the organism’s per-
spective, it makes a big di�erencewhether this process takes<�� years or ���’s to
����’s of years. This illustrates that even order-of-magnitude predictions could
be extremely useful.

Finally, there are a lot of interesting examples in the �eld of experimental
evolution, in which large numbers of independent populations can be evolved
in parallel in controlled laboratory conditions.
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Example: high-throughput evolution in the laboratory

The difference in convergence between point
mutations (2.6%) and functional units (31.5%)
suggests that we have not explored the diversity
of possible adaptive mutations. To illustrate this
result qualitatively, we plotted the number of
different beneficial mutations at various levels
(i.e., mutation, gene, operon, or functional unit)
as a function of the number of sequenced lines
(14). This exercise indicates that we are far from
detecting all possible beneficial mutations (Fig.
2B). However, the discovery of affected genes,
operons, and functional units was nearly saturated,
which suggested that fewer replicates may have
recovered the major targets of selection.

To estimate the number of sites that contribute
to an adaptive response, we developed a simple
model of mutation sampling analogous to the
coupon collector’s problem (19). Assuming that
beneficial mutations are sampled from a set of L
mutations, all with an equal mutation rate (m) and
selective coefficient (s), we fit the model to the
saturation curves in Fig. 2B (14). For genes with
>3 point mutations, we estimate that L = 850
possible sites of beneficial mutations are required
to yield our 400 observed pointmutations (Fig. 2C).
L = 850 is a minimum, because our approach
assumes no variance in m and s among sites. With
the addition of variance (20), the estimated num-

ber of sites increases, potentially reaching several
thousand sites (Fig. 2C).We conclude that a large
number of potentially beneficial sites are clustered
within a few operational units. This was expected
for the case of gene inactivation, for which differ-
ent mutations lead to the same phenotype, but the
diversity of possible solutions in essential func-
tions, like RNApol, is more surprising (table S2).

Do interactions among beneficial mutations
shape the adaptive trajectory? By examining all
combinations of a small number of beneficial
mutations, recent studies have demonstrated neg-
ative epistasis between beneficial mutations in dif-
ferent genes (3–5) and sign epistasis—in which a

Fig. 1. (A) Mutations in 114 independently evolved clones represented
along the E. coli B chromosome (15). Downward and upward triangles are
insertions and deletions, respectively. Mutational types are colored as in (C).
(B) The density of mutations along the genome in 5-kb sliding windows. (C)

The distribution of events according to mutational type. Point mutations are
split into nonsynonymous mutations (red), synonymous (white), and inter-
genic (orange). (D) The number of lines sharing mutational types (means T
SEM). All synonymous mutations were singletons.
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A new take on clonal interference

The rate at which steriles spread typically slows down over
time, as the mean fitness of the rest of the population
increases due to selection on existing variation or new
mutations. This leads to either a slowing down of a selective
sweep or clonal interference. Clonal interference occurs when
the mean fitness of the population oustrips that of the sterile
clone, and the rate of spread of the steriles becomes negative.
This can occur either because the sterile mutation was never
the most-fit individual in the population (i.e., existing varia-
tion) or because subsequent mutations outstripped it (i.e.,
new mutations). In the case of a selective sweep, the sterile
mutation generally occurs in a very favorable genetic back-
ground and thus increases in frequency much faster than the
sterile mutation alone would allow. During the sweep, the
nonsterile subpopulation increases in fitness relative to the
sterile subpopulation, but never outstrips it. The rate of in-
crease of the steriles therefore declines over time (Figure 8C).

Our results show that although selective sweeps and clonal
interference are strikingly different outcomes from the point of
view of a particular mutation, they are both special cases of
how individual new mutations interact with the existing
variation in the population. The difference between sweeps
and clonal interference is, in this view, largely determined by
where within the distribution of underlying variation the cell
that acquires the sterile mutation lies. A sweep will be likely
only if the sterile mutation occurs in a very fit cell; if the sterile

mutation occurs in a less fit cell, a sweep is unlikely and clonal
interference is the most probable outcome. This reinforces the
importance of underlying genetic variation and stands in
contrast to the traditional viewpoint of clonal interference as
a phenomenon caused mainly by later mutations (Gerrish and
Lenski 1998; Wilke 2004).

The tempo of adaptation

Many previous experiments in a variety of microbes have
measured the rate of adaptation during long-term evolution
experiments. These methods have typically involved direct
measurements of the mean fitness of the populations over
time. The trajectories of individual sterile mutations give us
an alternative way to measure the speed of adaptation. As
illustrated in Figure 9A, the parameters sup, sdown, and %max

provide a measure of the fitness of the sterile subpopulation
relative to the population mean fitness at specified times.
Specifically, sup records how far ahead of the population
mean fitness the sterile subpopulation was at the time at
which steriles first reached 0.1% (tup), sdown records how
far behind the population mean fitness the sterile subpopu-
lation was when it returned to 0.1% (tdown), and %max is
reached at a time tmax when the fitness of the sterile sub-
population is equal to the population mean fitness. It follows
that the average speed of mean fitness increase over the time
in which steriles were detectable is (sup 1 sdown)/ttransit,
where ttransit ¼ tdown – tup.

Figure 9 Rate of mean fitness increase. (A) A schematic of
a clonal interference trajectory relating the parameters sup,
sdown, and %max in terms of the fitness of the sterile sub-
population relative to the mean fitness of the population.
The average speed of mean fitness increase is (sup 1
sdown)/ttransit, where ttransit ¼ tdown – tup. If the speed of
mean fitness increase is constant, the trajectory will be
symmetrical with sup ¼ sdown and %max occurring equidis-
tant between tup and tdown. Asymmetry indicates either
the slowing down (sdown , sup) or speeding up (sdown .
sup) of the speed of mean fitness increase. (B) The average
rate of mean fitness increase during the transit time of the
sterile lineage, as inferred from the 51 high-quality clonal
interference trajectories, color coded by propagation re-
gime (top) and acceleration of mean fitness increase (bot-
tom). (C) The rate of adaptation for 12 of the 51
populations for which standard (competitive fitness assay)
measurements of mean fitness over time were available.
This independent method of calculating the speed of
mean fitness increase is consistent with the estimate of
1%/100 generations as estimated from the trajectories.
(D) Relationship between sup and sdown in populations in
which we observed 0.6%-effect sterile mutations; note
the excess of trajectories in which the speed of mean
fitness increase is slowing down. (E) Relationship between
sup and sdown in populations in which we observe 1.5%-
effect sterile mutations; these are not biased in terms of
changes in mean fitness increase.

Genetic Variation and the Fate of Beneficial Mutations 657

Independent 
Populations

Variation 
Across 

Ensemble

Tenaillon et al (Science, 2012) Lang et al (Genetics, 2011)

Mutations observed in genome

These experiments o�er an opportunity to move beyond merely speculating
about what might happen if we replayed the tape of evolution, and instead start
to map out the entire statistical ensemble of outcomes in a given environment.

To make progress on these questions, it’s clear that we’ll have to move be-
yond thinking about evolution as a historical process or a perfect optimization
machine, and instead start thinking about evolution as an algorithm, or a
statistical mechanical process.
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Evolution as a statistical mechanical process
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Goal: understand the mathematical models and experimental data that 
help us think about this process in a quantitative way

The catch is that this will require us tomove beyond the statistical mechanics of
billiard balls that we’re used to thinking about in physics. Instead, we’ll have to
deal with the statistical mechanics of noisy self-replicating bit-strings. The goal
of this course is to introduce the mathematical models and experimental data
that help us think about this process in a quantitative way.
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