
Randomness and Probability

Sincemany aspects of biology are stochastic, we’ll also need to rely on some con-
cepts from probability and statistics. We won’t require anything too sophis-
ticated –most biology students will have encountered this material in a statistics
course, while physicists will have likely seen it in a previous statmech or quan-
tum class. Both communities tend to use slightly di�erent notation, so we will
try to provide a list of common terminology here.

Random variables. We’ll assume that you are familiar with the concept of a
random variable, x̂, which is distributed according to some probability distri-
bution p(x), which could be continuous or discrete:

 

A continuous random variable might be appropriate for a continuous quantity
like position or time, while a discrete random variable might refer to something
discrete like the number of ribosomes in a cell or the conformational state of a
protein. It’s common to refer to the distribution of a random variable using the
notation x̂ ⇠ p(x) [pronounced “x is distributed according to the distribution
p(x)”]. If we’re getting sloppy, we might drop the hat.

�



Normalization. One of the de�ning properties of a probability distribution
is that they are normalized (i.e. that they sum to one):

Z
p(x)dx = 1 (continuous r.v.) (��)

X

i

p(xi) = 1 (discrete r.v.) (��)

This is sometimes known as the law of total probability – it’s simply a state-
ment that something has to happen if we know we’ve enumerated all the possi-
bilities.

Means and averages. The average / mean / expected value of x̂ will be
denoted by

hxi ⌘ E[x] ⌘
Z

x · p(x) dx , (��)

for a continuous random variable, or

hxi ⌘ E[x] ⌘
X

i

xi · p(xi) (��)

for a discrete random variable. In many cases, the mean provides a decent esti-
mate of the “typical” value of x̂.

Variance and uncertainty The variance (ormean squared deviation) of
x̂ is de�ned by

Var(x) ⌘ �2
x ⌘ hx2i � hxi2 . (��)

The square root of this quantity, also known as the standard deviation,

Std(x) ⌘ �x ⌘
p

Var(x) (��)
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is often used to quantify the uncertainty in x̂ (or the “spread” in its probabil-
ity distribution p(x)). Note that from the de�nition above, the variance and
standard deviation satisfy the scaling property Var(c · x) = c2 · Var(x) and
Std(c · x) = c · Std(x)

Commondistributions. Wewill assume that you are familiarwith somecom-
mon probability distributions. These include discrete distributions like the bi-
nomial distribution,

n ⇠ Binomial(N, p) =) P (n) =

✓
N

n

◆
pn(1� p)N�n (��)

whichmodels the number of successes inN independent coin �ips with success
probability p. Another common distribution we’ll encounter is the Gaussian
orNormal distribution,

x ⇠ Gaussian(µ, �2) =) p(x) =
1p
2⇡�2

e�
(x�µ)2

2�2 , (��)

which has mean hxi = µ and variance �2. To save space, we will sometimes
write this as x ⇠ N(µ, �2).

Note: Wikipedia is extremely useful for common probability distributions.� It
lists formulas for themeans, variances, and othermoments (when they are known),
as well as useful identities connecting the di�erent distributions.

Strongly peaked distributions. Throughout this course, we will often en-
counter distributions that are strongly peaked— that is, most of their weight
is concentrated within a narrow band of x values where p(x) is highest. An ex-
ample might be the binomial distribution in Eq. (��) with a very large value of
N : if we �ip amillion fair coins, we are fairly con�dent that the number of heads

�e.g. https://en.wikipedia.org/wiki/Binomial_distribution.
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will be close to ��%. In this case, it is common to summarize these distributions
by Taylor expanding p(x) in the neighborhood of this “most likely” value.

For example, if the point x⇤ is a maximum of p(x), then we know from cal-
culus that the �rst derivative must vanish at x⇤:

@p(x)

@x

����
x=x⇤

= 0 (��)

In practice, it is more common (and often easier) to work with the logarithm of
p(x) instead, which satis�es the same condition:

@ log p(x)

@x

����
x=x⇤

= 0 (��)

We will often use this criterion to identify where the most likely value of x is. In
many cases of interest the most likely value x⇤ will also coincide with the mean
hxi de�ned above. This makes it another good summary of the “typical” value
of x (which is often easier to calculate, since it doesn’t require us to perform an
integral).

*
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�p(x)

�x

����
x=x�

= 0

Joint distributions. We’ll also need to use the concept of a joint distribu-
tion, which describes how a collection of � (or more) random variables are dis-
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tributed at the same time:

p(x, y) ⌘ “probability that x̂ = x and
ŷ = y at the same time” (��)

If we know the joint distribution, we can calculate the single-variable distribu-
tion for any one of the variables (also known as themarginal distribution) by
integrating over the possible values of the others:

p(x) ⌘
Z

p(x, y) dy (��)

This is sometimes known as the law of total probability. We can also de�ne
the conditional probability,

p(x|y) ⌘ p(x, y)

p(y)
⌘ “probability that x̂ = x

if we know that ŷ = y” (��)

An important concept is statistical independence, which occurs when the
joint distribution factorizes:

p(x, y) = p(x)p(y) (��)

Using the de�nition of the conditional probability in Eq. (��), we can equiva-
lently write this as

p(x|y) = p(x) () “x is independent of y” (��)

In other words, two random variables are independent if knowing the value of
y provides no extra information about the value of x (and vice versa).

Sums of random variables and the central limit theorem. Throughout
the course, we’ll often encounter phenomena that depend on sums of indepen-
dent random variables. E.g. the total force imparted on an E. coli cell by colli-
sions with a large number of solvent molecules. In this case, an important result
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will be the central limit theorem. This result says thatx1, x2, . . . , xn are inde-
pendent random variables, then for su�ciently large n, their sumwill approach
a Gaussian distribution:

nX

i=1

xi ⇡ Gaussian

"
X

i

hxii,
X

i

Var(xi)

#
(��)

whose mean and variance are equal to the sums of the means and variances of
the xi. If the xi all the same mean and variance, we will often write this as

1

n

nX

i=1

xi ⇡ hxi±
r

Var(x)

n
(��)

which shows that the spread of the mean of a bunch of observations scales like
1/
p
n when n is large. The central limit theorem will become important when

we consider di�usion and random walks later in the course.
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